Cargando…

Interactional similarities and differences in the protein complex of PCNA and DNA replication factor C between rice and Arabidopsis

BACKGROUND: Proliferating cell nuclear antigen (PCNA), a conserved trimeric ring complex, is loaded onto replication fork through a hetero-pentameric AAA+ ATPase complex termed replication factor C (RFC) to maintain genome stability. Although architectures of PCNA-RFC complex in yeast have been reve...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Jie, Chen, Yueyue, Xu, Yaxing, Zhang, Xiufeng, Kang, Zhuang, Jiao, Jinxia, Zhao, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570896/
https://www.ncbi.nlm.nih.gov/pubmed/31200645
http://dx.doi.org/10.1186/s12870-019-1874-z
Descripción
Sumario:BACKGROUND: Proliferating cell nuclear antigen (PCNA), a conserved trimeric ring complex, is loaded onto replication fork through a hetero-pentameric AAA+ ATPase complex termed replication factor C (RFC) to maintain genome stability. Although architectures of PCNA-RFC complex in yeast have been revealed, the functions of PCNA and protein-protein interactions of PCNA-RFC complex in higher plants are not very clear. Here, essential regions mediating interactions between PCNA and RFC subunits in Arabidopsis and rice were investigated via yeast-two-hybrid method and bimolecular fluorescence complementation techniques. RESULTS: We observed that OsPCNA could interact with all OsRFC subunits, while protein-protein interactions only exist between Arabidopsis RFC2/3/4/5 and AtPCNA1/2. The truncated analyses indicated that the C-terminal of Arabidopsis RFC2/3/4/5 and rice RFC1/2 is essential for binding PCNA while the region of rice RFC3/4/5 mediating interaction with PCNA distributed both at the N- and C-terminal. On the other hand, we found that the C- and N-terminal of Arabidopsis and rice PCNA contribute equally to PCNA-PCNA interaction, and the interdomain connecting loop (IDCL) domain and C-terminal of PCNAs are indispensable for interacting RFC subunits. CONCLUSIONS: These results indicated that Arabidopsis and rice PCNAs are highly conserved in sequence, structure and pattern of interacting with other PCNA monomer. Nevertheless, there are also significant differences between the Arabidopsis and rice RFC subunits in binding PCNA. Taken together, our results could be helpful for revealing the biological functions of plant RFC-PCNA complex. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12870-019-1874-z) contains supplementary material, which is available to authorized users.