Cargando…
The emergence of the two cell fates and their associated switching for a negative auto-regulating gene
BACKGROUND: Decisions in the cell that lead to its ultimate fate are important for fundamental cellular functions such as proliferation, growth, differentiation, development, and death. These cell fate decisions can be influenced by both the gene regulatory network and also environmental factors and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570905/ https://www.ncbi.nlm.nih.gov/pubmed/31202264 http://dx.doi.org/10.1186/s12915-019-0666-0 |
_version_ | 1783427323335278592 |
---|---|
author | Jiang, Zhenlong Tian, Li Fang, Xiaona Zhang, Kun Liu, Qiong Dong, Qingzhe Wang, Erkang Wang, Jin |
author_facet | Jiang, Zhenlong Tian, Li Fang, Xiaona Zhang, Kun Liu, Qiong Dong, Qingzhe Wang, Erkang Wang, Jin |
author_sort | Jiang, Zhenlong |
collection | PubMed |
description | BACKGROUND: Decisions in the cell that lead to its ultimate fate are important for fundamental cellular functions such as proliferation, growth, differentiation, development, and death. These cell fate decisions can be influenced by both the gene regulatory network and also environmental factors and can be modeled using simple gene feedback circuits. Negative auto-regulation is a common feedback motif in the gene circuits. It can act to reduce gene expression noise or induce oscillatory expression and is thought to lead to only one cell fate. Here, we present experimental and modeling data to suggest that a self-repressor circuit can lead to two cell fates under specific conditions. RESULTS: We show that the introduction of inducers capable of binding and unbinding to a self-repressing gene product (protein), thus regulating the associated gene, can lead to the emergence of two cell states. We suggest that the inducers can alter the effective regulatory binding and unbinding speed of the self-repressor regulatory protein to its destination DNA without changing the gene itself. The corresponding simulation results are consistent with the experimental findings. We propose physical and quantitative explanations for the origin of the two phenotypic cell fates. CONCLUSIONS: Our results suggest a mechanism for the emergence of multiple cell fates. This may explain the heterogeneity often observed among cell states, while illustrating that altering gene regulation strength can influence cell fates and their decision-making processes without genetic changes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12915-019-0666-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6570905 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65709052019-06-27 The emergence of the two cell fates and their associated switching for a negative auto-regulating gene Jiang, Zhenlong Tian, Li Fang, Xiaona Zhang, Kun Liu, Qiong Dong, Qingzhe Wang, Erkang Wang, Jin BMC Biol Research Article BACKGROUND: Decisions in the cell that lead to its ultimate fate are important for fundamental cellular functions such as proliferation, growth, differentiation, development, and death. These cell fate decisions can be influenced by both the gene regulatory network and also environmental factors and can be modeled using simple gene feedback circuits. Negative auto-regulation is a common feedback motif in the gene circuits. It can act to reduce gene expression noise or induce oscillatory expression and is thought to lead to only one cell fate. Here, we present experimental and modeling data to suggest that a self-repressor circuit can lead to two cell fates under specific conditions. RESULTS: We show that the introduction of inducers capable of binding and unbinding to a self-repressing gene product (protein), thus regulating the associated gene, can lead to the emergence of two cell states. We suggest that the inducers can alter the effective regulatory binding and unbinding speed of the self-repressor regulatory protein to its destination DNA without changing the gene itself. The corresponding simulation results are consistent with the experimental findings. We propose physical and quantitative explanations for the origin of the two phenotypic cell fates. CONCLUSIONS: Our results suggest a mechanism for the emergence of multiple cell fates. This may explain the heterogeneity often observed among cell states, while illustrating that altering gene regulation strength can influence cell fates and their decision-making processes without genetic changes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12915-019-0666-0) contains supplementary material, which is available to authorized users. BioMed Central 2019-06-15 /pmc/articles/PMC6570905/ /pubmed/31202264 http://dx.doi.org/10.1186/s12915-019-0666-0 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Jiang, Zhenlong Tian, Li Fang, Xiaona Zhang, Kun Liu, Qiong Dong, Qingzhe Wang, Erkang Wang, Jin The emergence of the two cell fates and their associated switching for a negative auto-regulating gene |
title | The emergence of the two cell fates and their associated switching for a negative auto-regulating gene |
title_full | The emergence of the two cell fates and their associated switching for a negative auto-regulating gene |
title_fullStr | The emergence of the two cell fates and their associated switching for a negative auto-regulating gene |
title_full_unstemmed | The emergence of the two cell fates and their associated switching for a negative auto-regulating gene |
title_short | The emergence of the two cell fates and their associated switching for a negative auto-regulating gene |
title_sort | emergence of the two cell fates and their associated switching for a negative auto-regulating gene |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570905/ https://www.ncbi.nlm.nih.gov/pubmed/31202264 http://dx.doi.org/10.1186/s12915-019-0666-0 |
work_keys_str_mv | AT jiangzhenlong theemergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT tianli theemergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT fangxiaona theemergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT zhangkun theemergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT liuqiong theemergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT dongqingzhe theemergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT wangerkang theemergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT wangjin theemergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT jiangzhenlong emergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT tianli emergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT fangxiaona emergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT zhangkun emergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT liuqiong emergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT dongqingzhe emergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT wangerkang emergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene AT wangjin emergenceofthetwocellfatesandtheirassociatedswitchingforanegativeautoregulatinggene |