Cargando…

Clinical development of triple-combination CFTR modulators for cystic fibrosis patients with one or two F508del alleles

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator gene (CFTR) that result in diminished quantity and/or function of the CFTR anion channel. F508del-CFTR, the most common CF-causing mutation (found in ∼90% of patients), causes severe processing and trafficking...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor-Cousar, Jennifer L., Mall, Marcus A., Ramsey, Bonnie W., McKone, Edward F., Tullis, Elizabeth, Marigowda, Gautham, McKee, Charlotte M., Waltz, David, Moskowitz, Samuel M., Savage, Jessica, Xuan, Fengjuan, Rowe, Steven M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Respiratory Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571452/
https://www.ncbi.nlm.nih.gov/pubmed/31218221
http://dx.doi.org/10.1183/23120541.00082-2019
Descripción
Sumario:Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator gene (CFTR) that result in diminished quantity and/or function of the CFTR anion channel. F508del-CFTR, the most common CF-causing mutation (found in ∼90% of patients), causes severe processing and trafficking defects, resulting in decreased CFTR quantity and function. CFTR modulators are medications that increase the amount of mature CFTR protein (correctors) or enhance channel function (potentiators) at the cell surface. Combinations of CFTR correctors and potentiators (i.e. lumacaftor/ivacaftor, tezacaftor/ivacaftor) have demonstrated clinical benefit in subsets of patients. However, none are approved for patients with CF heterozygous for F508del-CFTR and a minimal function mutation, i.e. a mutation that produces either no protein or protein that is unresponsive to currently approved CFTR modulators. Next-generation CFTR correctors VX-659 and VX-445, each in triple combination with tezacaftor and ivacaftor, improve CFTR processing, trafficking and function in vitro and have demonstrated clinical improvements in phase 2 studies in patients with CF with one or two F508del-CFTR alleles. Here, we present the rationale and design of four randomised phase 3 studies, and their open-label extensions, evaluating VX-659 (ECLIPSE) or VX-445 (AURORA) plus tezacaftor and ivacaftor in patients with one or two F508del-CFTR alleles.