Cargando…

Micro-Injection Moulding of Poly(vinylpyrrolidone-vinyl acetate) Binary and Ternary Amorphous Solid Dispersions

Micro-injection moulding (µIM) was used for the production of enteric tablets of plasticised and unplasticised solid dispersions of poly(vinylpyrrolidone-vinyl acetate) (PVPVA), and the effect of the mechanical and thermal treatment on the properties of the dispersions was investigated. The physical...

Descripción completa

Detalles Bibliográficos
Autores principales: Pezzoli, Romina, Hopkins Jnr, Michael, Direur, Guillaume, Gately, Noel, Lyons, John G., Higginbotham, Clement L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571625/
https://www.ncbi.nlm.nih.gov/pubmed/31109108
http://dx.doi.org/10.3390/pharmaceutics11050240
Descripción
Sumario:Micro-injection moulding (µIM) was used for the production of enteric tablets of plasticised and unplasticised solid dispersions of poly(vinylpyrrolidone-vinyl acetate) (PVPVA), and the effect of the mechanical and thermal treatment on the properties of the dispersions was investigated. The physical state of the systems showed to be unaltered by the µIM step, maintaining the drug in the amorphous state. The dissolution profile of the tablets showed a slower dissolution rate due to the lower surface to volume ratio compared to the extruded strands. The lack of solubility of the doses in the acidic medium as a consequence of the acidity of indomethacin (IND) was observed. However, in neutral pH the drug dissolution showed slower rates without affecting the dissolution extent, showing a potential application for the development of controlled release doses. Overall, the production of tablets of amorphous solid dispersions (ASD), coupling hot-melt extrusion (HME) and µIM, proved to be a successful approach towards a continuous automated manufacturing process to improve the aqueous solubility of poorly water-soluble drugs.