Cargando…
ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides
Anticancer peptides (ACPs) have emerged as a new class of therapeutic agent for cancer treatment due to their lower toxicity as well as greater efficacy, selectivity and specificity when compared to conventional small molecule drugs. However, the experimental identification of ACPs still remains a t...
Autores principales: | Schaduangrat, Nalini, Nantasenamat, Chanin, Prachayasittikul, Virapong, Shoombuatong, Watshara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571645/ https://www.ncbi.nlm.nih.gov/pubmed/31121946 http://dx.doi.org/10.3390/molecules24101973 |
Ejemplares similares
-
Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation
por: Schaduangrat, Nalini, et al.
Publicado: (2019) -
TargetAntiAngio: A Sequence-Based Tool for the Prediction and Analysis of Anti-Angiogenic Peptides
por: Laengsri, Vishuda, et al.
Publicado: (2019) -
Unraveling the bioactivity of anticancer peptides as deduced from machine learning
por: Shoombuatong, Watshara, et al.
Publicado: (2018) -
iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou’s 5-Steps Rule and Informative Physicochemical Properties
por: Charoenkwan, Phasit, et al.
Publicado: (2019) -
Prediction of aromatase inhibitory activity using the efficient linear method (ELM)
por: Shoombuatong, Watshara, et al.
Publicado: (2015)