Cargando…

Polyethylene-Matrix Composites with Halloysite Nanotubes with Enhanced Physical/Thermal Properties

The aim of the present work is to investigate the effect of halloysite nanotubes (HNT) on the mechanical properties of low-density polyethylene composites modified by maleic anhydride-grafted PE (PE-graft-MA). Polyethylene nanocomposites were prepared using an injection molding machine, Arburg Allro...

Descripción completa

Detalles Bibliográficos
Autores principales: Sikora, Janusz W., Gajdoš, Ivan, Puszka, Andrzej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571691/
https://www.ncbi.nlm.nih.gov/pubmed/31052527
http://dx.doi.org/10.3390/polym11050787
Descripción
Sumario:The aim of the present work is to investigate the effect of halloysite nanotubes (HNT) on the mechanical properties of low-density polyethylene composites modified by maleic anhydride-grafted PE (PE-graft-MA). Polyethylene nanocomposites were prepared using an injection molding machine, Arburg Allrounder 320 C 500–170; the HNT content was varied at 0 wt %, 2 wt %, 4 wt % and 6 wt %, and the PE-graft-MA content was varied at 5 wt %. The composites were examined for their ultimate tensile stress, strain at ultimate stress, hardness, impact strength, melt flow rate, heat deflection temperature, Vicat softening temperature, crystallinity degree and phase transition temperature. It was found that the addition of halloysite nanotubes to low-density polyethylene (LDPE) led to an increased heat deflection temperature (HDT, up to 47 °C) and ultimate tensile strength (up to 16.00 MPa) while the Vicat softening temperature, strain at ultimate stress, impact strength and hardness of examined specimens slightly decreased. Processing properties of the materials specified by the melt flow rate (MFR) deteriorated almost twice. The results have demonstrated that the nanoparticles can reinforce enhance LDPE at low filler content without any considerable loss of its ductility, but only when halloysite nanotubes are superbly distributed in the polyethylene matrix.