Cargando…
A Comparative Study of Machine Learning Algorithms in Predicting Severe Complications after Bariatric Surgery
Background: Severe obesity is a global public health threat of growing proportions. Accurate models to predict severe postoperative complications could be of value in the preoperative assessment of potential candidates for bariatric surgery. So far, traditional statistical methods have failed to pro...
Autores principales: | Cao, Yang, Fang, Xin, Ottosson, Johan, Näslund, Erik, Stenberg, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571760/ https://www.ncbi.nlm.nih.gov/pubmed/31083643 http://dx.doi.org/10.3390/jcm8050668 |
Ejemplares similares
-
Risk Prediction Model for Severe Postoperative Complication in Bariatric Surgery
por: Stenberg, Erik, et al.
Publicado: (2018) -
Deep Learning Neural Networks to Predict Serious Complications After Bariatric Surgery: Analysis of Scandinavian Obesity Surgery Registry Data
por: Cao, Yang, et al.
Publicado: (2020) -
Using a Convolutional Neural Network to Predict Remission of Diabetes After Gastric Bypass Surgery: Machine Learning Study From the Scandinavian Obesity Surgery Register
por: Cao, Yang, et al.
Publicado: (2021) -
Incidence of Kidney Stones After Metabolic and Bariatric Surgery—Data from the Scandinavian Obesity Surgery Registry
por: Laurenius, Anna, et al.
Publicado: (2023) -
Duration of type 2 diabetes and remission rates after bariatric surgery in Sweden 2007–2015: A registry-based cohort study
por: Jans, Anders, et al.
Publicado: (2019)