Cargando…

Theoretical Study on the Difference in Electron Conductivity of a One-Dimensional Penta-Nickel(II) Complex between Anti-Ferromagnetic and Ferromagnetic States—Possibility of Molecular Switch with Open-Shell Molecules

The electron conductivity of an extended metal atom chain (EMAC) that consisted of penta-nickel(II) ions bridged by oligo-α-pyridylamino ligands was examined by density functional theory (DFT) and elastic scattering Green’s functions (ESGF) calculations. The calculated results revealed that an intra...

Descripción completa

Detalles Bibliográficos
Autores principales: Kitagawa, Yasutaka, Tada, Hayato, Era, Iori, Fujii, Takuya, Ikenaga, Kazuki, Nakano, Masayoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571866/
https://www.ncbi.nlm.nih.gov/pubmed/31117287
http://dx.doi.org/10.3390/molecules24101956
Descripción
Sumario:The electron conductivity of an extended metal atom chain (EMAC) that consisted of penta-nickel(II) ions bridged by oligo-α-pyridylamino ligands was examined by density functional theory (DFT) and elastic scattering Green’s functions (ESGF) calculations. The calculated results revealed that an intramolecular ferromagnetic (FM) coupling state showed a higher conductivity in comparison with an anti-ferromagnetic (AFM) coupling state. The present results suggest the potential of the complex as a molecular switch as well as a molecular wire.