Cargando…
MRI Assessment of Global and Regional Diaphragmatic Motion in Critically Ill Patients Following Prolonged Ventilator Weaning
Introduction: diaphragmatic dysfunction is a common cause of slow weaning in mechanically ventilated patients. Diaphragmatic dysfunction in ventilated patients can be global or regional. The aim of our study was to evaluate the motion of the entire diaphragm in patients who were ventilated for a pro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571928/ https://www.ncbi.nlm.nih.gov/pubmed/31121866 http://dx.doi.org/10.3390/medsci7050066 |
Sumario: | Introduction: diaphragmatic dysfunction is a common cause of slow weaning in mechanically ventilated patients. Diaphragmatic dysfunction in ventilated patients can be global or regional. The aim of our study was to evaluate the motion of the entire diaphragm in patients who were ventilated for a protracted period in comparison with healthy controls by using Magnetic Resonance Imaging (MRI). Methods: Intensive care patients who had a prolonged ventilator wean and required tracheostomies were enrolled based on extensive exclusion criteria. MRI dynamic sequence and subtraction images were used to measure vertical displacement at five different points on each hemi-diaphragm during normal tidal breathing. Tidal displacement of each point on the right and left hemi-diaphragms of the patients were compared to the precise respective points on the right and left hemi-diaphragms of enrolled controls. Results: Eight intensive care patients and eight controls were enrolled. There were observed significant differences in the displacements of the left hemi-diaphragm between the two groups (median 6.4 mm [Interquartile range (IQR), 4.6–12.5]) vs. 11.6 mm [IQR, 9.5–14.5], p = 0.02). There were also observed significant differences in the displacements at five evaluated study points on the left hemi-diaphragms of the patients when compared to the precise respective points in controls, especially at the dome (median 6.7 mm [IQR, 5.0–11.4] vs. 13.5 mm [IQR 11.5-18], p value = 0.005) and the anterior zone of apposition (median 5.0 mm [IQR, 3.3–7.1] vs. 7.8mm [IQR, 7.1–10.5], p value = 0.01). The intensive care patients showed lower minimal and maximal values of displacement of right hemi-diaphragms compared to the controls, suggesting that the differences in the displacement of right hemi-diaphragm are possible; however, the differences in the mean values of displacement of right hemi-diaphragm between the intensive care patient group and the control group (median 9.8 mm [IQR (Interquartile range), 5.0–12.3] vs. 10.1 mm [IQR 8.3–18.5], p = 0.12) did not reach the level of significance. Conclusion: Although frequently global, diaphragm dysfunction in ventilated patients after prolonged ventilation can also be regional or focal when assessed by MRI dynamic sequence. The vertical displacement of both right and left hemi-diaphragms at various anatomical locations had different values in both controls, and patients. There were significant focal variations in the movement of diaphragm in patients with ventilator-induced diaphragmatic dysfunction. |
---|