Cargando…
Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes
[Image: see text] Diamond membrane devices containing optically coherent nitrogen-vacancy (NV) centers are key to enable novel cryogenic experiments such as optical ground-state cooling of hybrid spin-mechanical systems and efficient entanglement distribution in quantum networks. Here, we report on...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571932/ https://www.ncbi.nlm.nih.gov/pubmed/31136192 http://dx.doi.org/10.1021/acs.nanolett.9b01316 |
_version_ | 1783427523994976256 |
---|---|
author | Ruf, Maximilian IJspeert, Mark van Dam, Suzanne de Jong, Nick van den Berg, Hans Evers, Guus Hanson, Ronald |
author_facet | Ruf, Maximilian IJspeert, Mark van Dam, Suzanne de Jong, Nick van den Berg, Hans Evers, Guus Hanson, Ronald |
author_sort | Ruf, Maximilian |
collection | PubMed |
description | [Image: see text] Diamond membrane devices containing optically coherent nitrogen-vacancy (NV) centers are key to enable novel cryogenic experiments such as optical ground-state cooling of hybrid spin-mechanical systems and efficient entanglement distribution in quantum networks. Here, we report on the fabrication of a (3.4 ± 0.2) μm thin, smooth (surface roughness r(q) < 0.4 nm over an area of 20 μm by 30 μm) diamond membrane containing individually resolvable, narrow linewidth (< 100 MHz) NV centers. We fabricate this sample via a combination of high-energy electron irradiation, high-temperature annealing, and an optimized etching sequence found via a systematic study of the diamond surface evolution on the microscopic level in different etch chemistries. Although our particular device dimensions are optimized for cavity-enhanced entanglement generation between distant NV centers in open, tunable microcavities, our results have implications for a broad range of quantum experiments that require the combination of narrow optical transitions and micrometer-scale device geometry. |
format | Online Article Text |
id | pubmed-6571932 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-65719322019-06-20 Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes Ruf, Maximilian IJspeert, Mark van Dam, Suzanne de Jong, Nick van den Berg, Hans Evers, Guus Hanson, Ronald Nano Lett [Image: see text] Diamond membrane devices containing optically coherent nitrogen-vacancy (NV) centers are key to enable novel cryogenic experiments such as optical ground-state cooling of hybrid spin-mechanical systems and efficient entanglement distribution in quantum networks. Here, we report on the fabrication of a (3.4 ± 0.2) μm thin, smooth (surface roughness r(q) < 0.4 nm over an area of 20 μm by 30 μm) diamond membrane containing individually resolvable, narrow linewidth (< 100 MHz) NV centers. We fabricate this sample via a combination of high-energy electron irradiation, high-temperature annealing, and an optimized etching sequence found via a systematic study of the diamond surface evolution on the microscopic level in different etch chemistries. Although our particular device dimensions are optimized for cavity-enhanced entanglement generation between distant NV centers in open, tunable microcavities, our results have implications for a broad range of quantum experiments that require the combination of narrow optical transitions and micrometer-scale device geometry. American Chemical Society 2019-05-28 2019-06-12 /pmc/articles/PMC6571932/ /pubmed/31136192 http://dx.doi.org/10.1021/acs.nanolett.9b01316 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Ruf, Maximilian IJspeert, Mark van Dam, Suzanne de Jong, Nick van den Berg, Hans Evers, Guus Hanson, Ronald Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes |
title | Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin
Etched Diamond Membranes |
title_full | Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin
Etched Diamond Membranes |
title_fullStr | Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin
Etched Diamond Membranes |
title_full_unstemmed | Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin
Etched Diamond Membranes |
title_short | Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin
Etched Diamond Membranes |
title_sort | optically coherent nitrogen-vacancy centers in micrometer-thin
etched diamond membranes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571932/ https://www.ncbi.nlm.nih.gov/pubmed/31136192 http://dx.doi.org/10.1021/acs.nanolett.9b01316 |
work_keys_str_mv | AT rufmaximilian opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes AT ijspeertmark opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes AT vandamsuzanne opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes AT dejongnick opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes AT vandenberghans opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes AT eversguus opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes AT hansonronald opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes |