Cargando…

Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes

[Image: see text] Diamond membrane devices containing optically coherent nitrogen-vacancy (NV) centers are key to enable novel cryogenic experiments such as optical ground-state cooling of hybrid spin-mechanical systems and efficient entanglement distribution in quantum networks. Here, we report on...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruf, Maximilian, IJspeert, Mark, van Dam, Suzanne, de Jong, Nick, van den Berg, Hans, Evers, Guus, Hanson, Ronald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571932/
https://www.ncbi.nlm.nih.gov/pubmed/31136192
http://dx.doi.org/10.1021/acs.nanolett.9b01316
_version_ 1783427523994976256
author Ruf, Maximilian
IJspeert, Mark
van Dam, Suzanne
de Jong, Nick
van den Berg, Hans
Evers, Guus
Hanson, Ronald
author_facet Ruf, Maximilian
IJspeert, Mark
van Dam, Suzanne
de Jong, Nick
van den Berg, Hans
Evers, Guus
Hanson, Ronald
author_sort Ruf, Maximilian
collection PubMed
description [Image: see text] Diamond membrane devices containing optically coherent nitrogen-vacancy (NV) centers are key to enable novel cryogenic experiments such as optical ground-state cooling of hybrid spin-mechanical systems and efficient entanglement distribution in quantum networks. Here, we report on the fabrication of a (3.4 ± 0.2) μm thin, smooth (surface roughness r(q) < 0.4 nm over an area of 20 μm by 30 μm) diamond membrane containing individually resolvable, narrow linewidth (< 100 MHz) NV centers. We fabricate this sample via a combination of high-energy electron irradiation, high-temperature annealing, and an optimized etching sequence found via a systematic study of the diamond surface evolution on the microscopic level in different etch chemistries. Although our particular device dimensions are optimized for cavity-enhanced entanglement generation between distant NV centers in open, tunable microcavities, our results have implications for a broad range of quantum experiments that require the combination of narrow optical transitions and micrometer-scale device geometry.
format Online
Article
Text
id pubmed-6571932
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-65719322019-06-20 Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes Ruf, Maximilian IJspeert, Mark van Dam, Suzanne de Jong, Nick van den Berg, Hans Evers, Guus Hanson, Ronald Nano Lett [Image: see text] Diamond membrane devices containing optically coherent nitrogen-vacancy (NV) centers are key to enable novel cryogenic experiments such as optical ground-state cooling of hybrid spin-mechanical systems and efficient entanglement distribution in quantum networks. Here, we report on the fabrication of a (3.4 ± 0.2) μm thin, smooth (surface roughness r(q) < 0.4 nm over an area of 20 μm by 30 μm) diamond membrane containing individually resolvable, narrow linewidth (< 100 MHz) NV centers. We fabricate this sample via a combination of high-energy electron irradiation, high-temperature annealing, and an optimized etching sequence found via a systematic study of the diamond surface evolution on the microscopic level in different etch chemistries. Although our particular device dimensions are optimized for cavity-enhanced entanglement generation between distant NV centers in open, tunable microcavities, our results have implications for a broad range of quantum experiments that require the combination of narrow optical transitions and micrometer-scale device geometry. American Chemical Society 2019-05-28 2019-06-12 /pmc/articles/PMC6571932/ /pubmed/31136192 http://dx.doi.org/10.1021/acs.nanolett.9b01316 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Ruf, Maximilian
IJspeert, Mark
van Dam, Suzanne
de Jong, Nick
van den Berg, Hans
Evers, Guus
Hanson, Ronald
Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes
title Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes
title_full Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes
title_fullStr Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes
title_full_unstemmed Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes
title_short Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes
title_sort optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571932/
https://www.ncbi.nlm.nih.gov/pubmed/31136192
http://dx.doi.org/10.1021/acs.nanolett.9b01316
work_keys_str_mv AT rufmaximilian opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes
AT ijspeertmark opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes
AT vandamsuzanne opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes
AT dejongnick opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes
AT vandenberghans opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes
AT eversguus opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes
AT hansonronald opticallycoherentnitrogenvacancycentersinmicrometerthinetcheddiamondmembranes