Cargando…

Development of Diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) Solvents for Improving Cellulose Dissolution and Fabricating Porous Material

Cellulose is the most abundant natural biopolymer, with unique properties such as biodegradability, biocompability, nontoxicity, and so on. However, its extensive application has actually been hindered, because of its insolubility in water and most solvents. Herein, highly efficient cellulose solven...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Airong, Chen, Lin, Wang, Yongxin, Liu, Rukuan, Niu, Wentian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572045/
https://www.ncbi.nlm.nih.gov/pubmed/31083305
http://dx.doi.org/10.3390/polym11050845
_version_ 1783427550368759808
author Xu, Airong
Chen, Lin
Wang, Yongxin
Liu, Rukuan
Niu, Wentian
author_facet Xu, Airong
Chen, Lin
Wang, Yongxin
Liu, Rukuan
Niu, Wentian
author_sort Xu, Airong
collection PubMed
description Cellulose is the most abundant natural biopolymer, with unique properties such as biodegradability, biocompability, nontoxicity, and so on. However, its extensive application has actually been hindered, because of its insolubility in water and most solvents. Herein, highly efficient cellulose solvents were developed by coupling diallylimidazolium methoxyacetate ([A(2)im][CH(3)OCH(2)COO]) with polar aprotic solvents dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA). Attractively, these solvents showed extraordinarily powerful dissolution performance for cellulose (e.g., 26.1 g·100g(−1)) in [A(2)im][CH(3)OCH(2)COO]/DMSO(R(DMSO) = 1.01 solvent even at 25 °C), which is much more advantageous over previously reported solvents. To our knowledge, such powerful cellulose solvents have not been reported before. The cellulose dissolution mechanism is proposed to be of three combined factors: (1) The hydrogen bond interactions of the H2, H4 and H6 in [A(2)im](+) and the carboxyl O atom in [CH(3)OCH(2)COO](−), along with the hydroxyl H atom and O atom in cellulose, are main driving force for cellulose dissolution; (2) the dissociation of [A(2)im][CH(3)OCH(2)COO] by DMF increases the anion and cation concentrations and thus promotes cellulose dissolution; (3) at the same time, DMF also stabilizes the dissolved cellulose chains. Meanwhile, the porous cellulose material with a varying morphologic structure could be facially fabricated by modulating the cellulose solution concentration. Additionally, the dissolution of cellulose in the solvents is only a physical process, and the regenerated cellulose from the solvents retains sufficient thermostability and a chemical structure similar to the original cellulose. Thus, this work will provide great possibility for developing cellulose-based products at ambient temperatures or under no extra heating/freezing conditions.
format Online
Article
Text
id pubmed-6572045
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-65720452019-06-18 Development of Diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) Solvents for Improving Cellulose Dissolution and Fabricating Porous Material Xu, Airong Chen, Lin Wang, Yongxin Liu, Rukuan Niu, Wentian Polymers (Basel) Article Cellulose is the most abundant natural biopolymer, with unique properties such as biodegradability, biocompability, nontoxicity, and so on. However, its extensive application has actually been hindered, because of its insolubility in water and most solvents. Herein, highly efficient cellulose solvents were developed by coupling diallylimidazolium methoxyacetate ([A(2)im][CH(3)OCH(2)COO]) with polar aprotic solvents dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA). Attractively, these solvents showed extraordinarily powerful dissolution performance for cellulose (e.g., 26.1 g·100g(−1)) in [A(2)im][CH(3)OCH(2)COO]/DMSO(R(DMSO) = 1.01 solvent even at 25 °C), which is much more advantageous over previously reported solvents. To our knowledge, such powerful cellulose solvents have not been reported before. The cellulose dissolution mechanism is proposed to be of three combined factors: (1) The hydrogen bond interactions of the H2, H4 and H6 in [A(2)im](+) and the carboxyl O atom in [CH(3)OCH(2)COO](−), along with the hydroxyl H atom and O atom in cellulose, are main driving force for cellulose dissolution; (2) the dissociation of [A(2)im][CH(3)OCH(2)COO] by DMF increases the anion and cation concentrations and thus promotes cellulose dissolution; (3) at the same time, DMF also stabilizes the dissolved cellulose chains. Meanwhile, the porous cellulose material with a varying morphologic structure could be facially fabricated by modulating the cellulose solution concentration. Additionally, the dissolution of cellulose in the solvents is only a physical process, and the regenerated cellulose from the solvents retains sufficient thermostability and a chemical structure similar to the original cellulose. Thus, this work will provide great possibility for developing cellulose-based products at ambient temperatures or under no extra heating/freezing conditions. MDPI 2019-05-10 /pmc/articles/PMC6572045/ /pubmed/31083305 http://dx.doi.org/10.3390/polym11050845 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xu, Airong
Chen, Lin
Wang, Yongxin
Liu, Rukuan
Niu, Wentian
Development of Diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) Solvents for Improving Cellulose Dissolution and Fabricating Porous Material
title Development of Diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) Solvents for Improving Cellulose Dissolution and Fabricating Porous Material
title_full Development of Diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) Solvents for Improving Cellulose Dissolution and Fabricating Porous Material
title_fullStr Development of Diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) Solvents for Improving Cellulose Dissolution and Fabricating Porous Material
title_full_unstemmed Development of Diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) Solvents for Improving Cellulose Dissolution and Fabricating Porous Material
title_short Development of Diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) Solvents for Improving Cellulose Dissolution and Fabricating Porous Material
title_sort development of diallylimidazolium methoxyacetate/dmso (dmf/dma) solvents for improving cellulose dissolution and fabricating porous material
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572045/
https://www.ncbi.nlm.nih.gov/pubmed/31083305
http://dx.doi.org/10.3390/polym11050845
work_keys_str_mv AT xuairong developmentofdiallylimidazoliummethoxyacetatedmsodmfdmasolventsforimprovingcellulosedissolutionandfabricatingporousmaterial
AT chenlin developmentofdiallylimidazoliummethoxyacetatedmsodmfdmasolventsforimprovingcellulosedissolutionandfabricatingporousmaterial
AT wangyongxin developmentofdiallylimidazoliummethoxyacetatedmsodmfdmasolventsforimprovingcellulosedissolutionandfabricatingporousmaterial
AT liurukuan developmentofdiallylimidazoliummethoxyacetatedmsodmfdmasolventsforimprovingcellulosedissolutionandfabricatingporousmaterial
AT niuwentian developmentofdiallylimidazoliummethoxyacetatedmsodmfdmasolventsforimprovingcellulosedissolutionandfabricatingporousmaterial