Cargando…

Effects of Water Immersion and Soil Moisture Content on Larval and Pupal Survival of Bactrocera minax (Diptera: Tephritidae)

Bactrocera minax, one of the most devastating citrus pests in Asia, has two developmental stages (mature larva and pupa) that complete their life cycle in the soil. Currently, southern China has a climate with abundant autumn rains, and soil moisture can be a major factor affecting the survival of l...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zaiyuan, Chambi, Consolatha, Du, Tianhua, Huang, Cong, Wang, Fulian, Zhang, Guifen, Li, Chuanren, Juma Kayeke, Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572153/
https://www.ncbi.nlm.nih.gov/pubmed/31091677
http://dx.doi.org/10.3390/insects10050138
_version_ 1783427573783461888
author Li, Zaiyuan
Chambi, Consolatha
Du, Tianhua
Huang, Cong
Wang, Fulian
Zhang, Guifen
Li, Chuanren
Juma Kayeke, Mohamed
author_facet Li, Zaiyuan
Chambi, Consolatha
Du, Tianhua
Huang, Cong
Wang, Fulian
Zhang, Guifen
Li, Chuanren
Juma Kayeke, Mohamed
author_sort Li, Zaiyuan
collection PubMed
description Bactrocera minax, one of the most devastating citrus pests in Asia, has two developmental stages (mature larva and pupa) that complete their life cycle in the soil. Currently, southern China has a climate with abundant autumn rains, and soil moisture can be a major factor affecting the survival of larvae and pupae of B. minax. In the present study, we evaluated the effects of water immersion and high soil moisture content on the development of mature larvae and pupae of B. minax. When immersed in water for 1 d, 100% of mature larvae of B. minax were knocked out. When larvae were immersed for less than 6 d, however, more than 92% of knocked-out larvae recovered within 24 h. The days of water immersion with 50% and 90% recovery ratios (indicated as RD(50) and RD(90)) were 10.3 d and 6.4 d, respectively. When larvae were immersed less than 6 d, the mortality ratios of larvae were not significantly different from those that were not immersed at all. The days of immersion causing 50% and 90% mortality of larvae (MD(50) and MD(90), respectively) were 7.6 d and 11.1 d, respectively. The pupation ratios of larvae were also observed to be not significantly different compared to non-immersion, and the days of immersion causing 50% and 90% pupation (PD(50) and PD(90), respectively) were 6.6 d and 0.8 d, respectively. Larval respiration rates were reduced after water immersion as a strategy for larval survival. High water content was not detrimental to pupae of B. minax. Adult emergence did not significantly decrease in soil with high water content, even though pupae were under those conditions for 161–175 d. The respiration rates of pupae were lower in soil with different moisture levels and were not significantly different, which ensured the survival of pupae in high water content. Reduced respiration rate is a strategy for survival of larvae and pupae, and remarkable tolerance to high moisture conditions could explain the high rate of spread and geographical distribution of B. minax. The results of this study provide a reference for the occurrence and control of B. minax.
format Online
Article
Text
id pubmed-6572153
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-65721532019-06-18 Effects of Water Immersion and Soil Moisture Content on Larval and Pupal Survival of Bactrocera minax (Diptera: Tephritidae) Li, Zaiyuan Chambi, Consolatha Du, Tianhua Huang, Cong Wang, Fulian Zhang, Guifen Li, Chuanren Juma Kayeke, Mohamed Insects Article Bactrocera minax, one of the most devastating citrus pests in Asia, has two developmental stages (mature larva and pupa) that complete their life cycle in the soil. Currently, southern China has a climate with abundant autumn rains, and soil moisture can be a major factor affecting the survival of larvae and pupae of B. minax. In the present study, we evaluated the effects of water immersion and high soil moisture content on the development of mature larvae and pupae of B. minax. When immersed in water for 1 d, 100% of mature larvae of B. minax were knocked out. When larvae were immersed for less than 6 d, however, more than 92% of knocked-out larvae recovered within 24 h. The days of water immersion with 50% and 90% recovery ratios (indicated as RD(50) and RD(90)) were 10.3 d and 6.4 d, respectively. When larvae were immersed less than 6 d, the mortality ratios of larvae were not significantly different from those that were not immersed at all. The days of immersion causing 50% and 90% mortality of larvae (MD(50) and MD(90), respectively) were 7.6 d and 11.1 d, respectively. The pupation ratios of larvae were also observed to be not significantly different compared to non-immersion, and the days of immersion causing 50% and 90% pupation (PD(50) and PD(90), respectively) were 6.6 d and 0.8 d, respectively. Larval respiration rates were reduced after water immersion as a strategy for larval survival. High water content was not detrimental to pupae of B. minax. Adult emergence did not significantly decrease in soil with high water content, even though pupae were under those conditions for 161–175 d. The respiration rates of pupae were lower in soil with different moisture levels and were not significantly different, which ensured the survival of pupae in high water content. Reduced respiration rate is a strategy for survival of larvae and pupae, and remarkable tolerance to high moisture conditions could explain the high rate of spread and geographical distribution of B. minax. The results of this study provide a reference for the occurrence and control of B. minax. MDPI 2019-05-14 /pmc/articles/PMC6572153/ /pubmed/31091677 http://dx.doi.org/10.3390/insects10050138 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Li, Zaiyuan
Chambi, Consolatha
Du, Tianhua
Huang, Cong
Wang, Fulian
Zhang, Guifen
Li, Chuanren
Juma Kayeke, Mohamed
Effects of Water Immersion and Soil Moisture Content on Larval and Pupal Survival of Bactrocera minax (Diptera: Tephritidae)
title Effects of Water Immersion and Soil Moisture Content on Larval and Pupal Survival of Bactrocera minax (Diptera: Tephritidae)
title_full Effects of Water Immersion and Soil Moisture Content on Larval and Pupal Survival of Bactrocera minax (Diptera: Tephritidae)
title_fullStr Effects of Water Immersion and Soil Moisture Content on Larval and Pupal Survival of Bactrocera minax (Diptera: Tephritidae)
title_full_unstemmed Effects of Water Immersion and Soil Moisture Content on Larval and Pupal Survival of Bactrocera minax (Diptera: Tephritidae)
title_short Effects of Water Immersion and Soil Moisture Content on Larval and Pupal Survival of Bactrocera minax (Diptera: Tephritidae)
title_sort effects of water immersion and soil moisture content on larval and pupal survival of bactrocera minax (diptera: tephritidae)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572153/
https://www.ncbi.nlm.nih.gov/pubmed/31091677
http://dx.doi.org/10.3390/insects10050138
work_keys_str_mv AT lizaiyuan effectsofwaterimmersionandsoilmoisturecontentonlarvalandpupalsurvivalofbactroceraminaxdipteratephritidae
AT chambiconsolatha effectsofwaterimmersionandsoilmoisturecontentonlarvalandpupalsurvivalofbactroceraminaxdipteratephritidae
AT dutianhua effectsofwaterimmersionandsoilmoisturecontentonlarvalandpupalsurvivalofbactroceraminaxdipteratephritidae
AT huangcong effectsofwaterimmersionandsoilmoisturecontentonlarvalandpupalsurvivalofbactroceraminaxdipteratephritidae
AT wangfulian effectsofwaterimmersionandsoilmoisturecontentonlarvalandpupalsurvivalofbactroceraminaxdipteratephritidae
AT zhangguifen effectsofwaterimmersionandsoilmoisturecontentonlarvalandpupalsurvivalofbactroceraminaxdipteratephritidae
AT lichuanren effectsofwaterimmersionandsoilmoisturecontentonlarvalandpupalsurvivalofbactroceraminaxdipteratephritidae
AT jumakayekemohamed effectsofwaterimmersionandsoilmoisturecontentonlarvalandpupalsurvivalofbactroceraminaxdipteratephritidae