Cargando…

Effects of Long-Term Storage at −80 °C on the Human Plasma Metabolome

High-quality biological samples are required for the favorable outcome of research studies, and valid data sets are crucial for successful biomarker identification. Prolonged storage of biospecimens may have an artificial effect on compound levels. In order to investigate the potential effects of lo...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagner-Golbs, Antje, Neuber, Sebastian, Kamlage, Beate, Christiansen, Nicole, Bethan, Bianca, Rennefahrt, Ulrike, Schatz, Philipp, Lind, Lars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572224/
https://www.ncbi.nlm.nih.gov/pubmed/31108909
http://dx.doi.org/10.3390/metabo9050099
Descripción
Sumario:High-quality biological samples are required for the favorable outcome of research studies, and valid data sets are crucial for successful biomarker identification. Prolonged storage of biospecimens may have an artificial effect on compound levels. In order to investigate the potential effects of long-term storage on the metabolome, human ethylenediaminetetraacetic acid (EDTA) plasma samples stored for up to 16 years were analyzed by gas and liquid chromatography-tandem mass spectrometry-based metabolomics. Only 2% of 231 tested plasma metabolites were altered in the first seven years of storage. However, upon longer storage periods of up to 16 years and more time differences of few years significantly affected up to 26% of the investigated metabolites when analyzed within subject age groups. Ontology classes that were most affected included complex lipids, fatty acids, energy metabolism molecules, and amino acids. In conclusion, the human plasma metabolome is adequately stable to long-term storage at −80 °C for up to seven years but significant changes occur upon longer storage. However, other biospecimens may display different sensitivities to long-term storage. Therefore, in retrospective studies on EDTA plasma samples, analysis is best performed within the first seven years of storage.