Cargando…

Thermal Degradation and Combustion Behaviors of Polyethylene/Alumina Trihydrate/Graphene Nanoplatelets

Graphene nanoplatelets (GNPs) were prepared from expanded graphite (EG) with fully exfoliated structure via ball milling coupled with ultrasonication. The structure of multi-layered GNPs was characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffract...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chunfeng, Wang, Jihua, Men, Zhenlong, Wang, Yongliang, Han, Zhidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572369/
https://www.ncbi.nlm.nih.gov/pubmed/31052423
http://dx.doi.org/10.3390/polym11050772
Descripción
Sumario:Graphene nanoplatelets (GNPs) were prepared from expanded graphite (EG) with fully exfoliated structure via ball milling coupled with ultrasonication. The structure of multi-layered GNPs was characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and Raman spectroscopy. By compounding alumina trihydrate (ATH) with GNPs, the well dispersed mixture of ATH/GNP was obtained, and it showed high flame retardant effectiveness in polyethylene (PE). The peak heat release rate (peak-HRR) decreased by 20% was proven by a cone calorimeter with the addition of GNPs as low as 0.2 wt % in PE/ATH. The results of thermogravimetric analysis (TG) illustrated the improved thermal stability and lower weight loss rate of PE/ATH/GNP than PE/ATH. A protective char with GNPs was evidenced by SEM and X-ray photoelectron spectroscopy (XPS). The well exfoliated structure and good dispersion of GNPs accounted for the formation of effective barrier, which made a profound contribution to the enhanced flame retardancy.