Cargando…
Quantitative Analysis of an Intraoperative Digitalized Esophageal Heart Sound Signal to Speculate on Perturbed Cardiovascular Function
Although visualization of heart sounds, known as phonocardiography, provides valuable information on cardiovascular hemodynamics, its use has not been widely encouraged due to the scarcity of information on its interpretation. In the present study, using the intraoperative phonocardiogram recorded b...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572513/ https://www.ncbi.nlm.nih.gov/pubmed/31137509 http://dx.doi.org/10.3390/jcm8050715 |
Sumario: | Although visualization of heart sounds, known as phonocardiography, provides valuable information on cardiovascular hemodynamics, its use has not been widely encouraged due to the scarcity of information on its interpretation. In the present study, using the intraoperative phonocardiogram recorded by an esophageal stethoscope, we quantitatively evaluated the time and frequency domains of modulation of the heart sounds components and their association with left ventricular contractility and systemic vascular resistance under the effects of various cardiovascular drugs. We analyzed 29 pairs of intraoperative digitalized phonocardiographic signals and their corresponding hemodynamic data before and after cardiovascular drug administration (ephedrine, esmolol, phenylephrine, and/or nicardipine) in 17 patients who underwent liver transplantation. The S1 and S2 components of the heart sounds (the first and second heart sounds, respectively) were identified and their modulation in time and frequency domains was analyzed. As an index of cardiovascular function, systolic tissue Doppler wave velocity (TDI S’), maximal dP/dt from the arterial waveform, and systemic vascular resistance were simultaneously evaluated. Ephedrine/esmolol and phenylephrine/nicardipine primarily affected the S1 and S2 components of the heart sounds, respectively. This result implies that the intraoperative phonocardiogram may have the potential to be useful in detecting the changes in contractility and afterload that commonly occur in patients receiving anesthesia. In an era of constant need for noninvasive hemodynamic assessment, phonocardiography has the potential for use as a novel and informative tool for monitoring of hemodynamic function. |
---|