Cargando…

Bulged and Canonical G-Quadruplex Conformations Determine NDPK Binding Specificity

Guanine-rich DNA strands can adopt tertiary structures known as G-quadruplexes (G4s) that form when Hoogsteen base-paired guanines assemble as planar stacks, stabilized by a central cation like K(+). In this study, we investigated the conformational heterogeneity of a G-rich sequence from the 5′ unt...

Descripción completa

Detalles Bibliográficos
Autores principales: Kopylov, Mykhailo, Jackson, Trevia M., Stroupe, M. Elizabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572678/
https://www.ncbi.nlm.nih.gov/pubmed/31126138
http://dx.doi.org/10.3390/molecules24101988
Descripción
Sumario:Guanine-rich DNA strands can adopt tertiary structures known as G-quadruplexes (G4s) that form when Hoogsteen base-paired guanines assemble as planar stacks, stabilized by a central cation like K(+). In this study, we investigated the conformational heterogeneity of a G-rich sequence from the 5′ untranslated region of the Zea mays hexokinase4 gene. This sequence adopted an extensively polymorphic G-quadruplex, including non-canonical bulged G-quadruplex folds that co-existed in solution. The nature of this polymorphism depended, in part, on the incorporation of different sets of adjacent guanines into a quadruplex core, which permitted the formation of the different conformations. Additionally, we showed that the maize homolog of the human nucleoside diphosphate kinase (NDPK) NM23-H2 protein—ZmNDPK1—specifically recognizes and promotes formation of a subset of these conformations. Heteromorphic G-quadruplexes play a role in microorganisms’ ability to evade the host immune system, so we also discuss how the underlying properties that determine heterogeneity of this sequence could apply to microorganism G4s.