Cargando…

Direct band-gap crossover in epitaxial monolayer boron nitride

Hexagonal boron nitride is a large band-gap insulating material which complements the electronic and optical properties of graphene and the transition metal dichalcogenides. However, the intrinsic optical properties of monolayer boron nitride remain largely unexplored. In particular, the theoretical...

Descripción completa

Detalles Bibliográficos
Autores principales: Elias, C., Valvin, P., Pelini, T., Summerfield, A., Mellor, C. J., Cheng, T. S., Eaves, L., Foxon, C. T., Beton, P. H., Novikov, S. V., Gil, B., Cassabois, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572751/
https://www.ncbi.nlm.nih.gov/pubmed/31201328
http://dx.doi.org/10.1038/s41467-019-10610-5
_version_ 1783427710920425472
author Elias, C.
Valvin, P.
Pelini, T.
Summerfield, A.
Mellor, C. J.
Cheng, T. S.
Eaves, L.
Foxon, C. T.
Beton, P. H.
Novikov, S. V.
Gil, B.
Cassabois, G.
author_facet Elias, C.
Valvin, P.
Pelini, T.
Summerfield, A.
Mellor, C. J.
Cheng, T. S.
Eaves, L.
Foxon, C. T.
Beton, P. H.
Novikov, S. V.
Gil, B.
Cassabois, G.
author_sort Elias, C.
collection PubMed
description Hexagonal boron nitride is a large band-gap insulating material which complements the electronic and optical properties of graphene and the transition metal dichalcogenides. However, the intrinsic optical properties of monolayer boron nitride remain largely unexplored. In particular, the theoretically expected crossover to a direct-gap in the limit of the single monolayer is presently not confirmed experimentally. Here, in contrast to the technique of exfoliating few-layer 2D hexagonal boron nitride, we exploit the scalable approach of high-temperature molecular beam epitaxy to grow high-quality monolayer boron nitride on graphite substrates. We combine deep-ultraviolet photoluminescence and reflectance spectroscopy with atomic force microscopy to reveal the presence of a direct gap of energy 6.1 eV in the single atomic layers, thus confirming a crossover to direct gap in the monolayer limit.
format Online
Article
Text
id pubmed-6572751
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65727512019-06-24 Direct band-gap crossover in epitaxial monolayer boron nitride Elias, C. Valvin, P. Pelini, T. Summerfield, A. Mellor, C. J. Cheng, T. S. Eaves, L. Foxon, C. T. Beton, P. H. Novikov, S. V. Gil, B. Cassabois, G. Nat Commun Article Hexagonal boron nitride is a large band-gap insulating material which complements the electronic and optical properties of graphene and the transition metal dichalcogenides. However, the intrinsic optical properties of monolayer boron nitride remain largely unexplored. In particular, the theoretically expected crossover to a direct-gap in the limit of the single monolayer is presently not confirmed experimentally. Here, in contrast to the technique of exfoliating few-layer 2D hexagonal boron nitride, we exploit the scalable approach of high-temperature molecular beam epitaxy to grow high-quality monolayer boron nitride on graphite substrates. We combine deep-ultraviolet photoluminescence and reflectance spectroscopy with atomic force microscopy to reveal the presence of a direct gap of energy 6.1 eV in the single atomic layers, thus confirming a crossover to direct gap in the monolayer limit. Nature Publishing Group UK 2019-06-14 /pmc/articles/PMC6572751/ /pubmed/31201328 http://dx.doi.org/10.1038/s41467-019-10610-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Elias, C.
Valvin, P.
Pelini, T.
Summerfield, A.
Mellor, C. J.
Cheng, T. S.
Eaves, L.
Foxon, C. T.
Beton, P. H.
Novikov, S. V.
Gil, B.
Cassabois, G.
Direct band-gap crossover in epitaxial monolayer boron nitride
title Direct band-gap crossover in epitaxial monolayer boron nitride
title_full Direct band-gap crossover in epitaxial monolayer boron nitride
title_fullStr Direct band-gap crossover in epitaxial monolayer boron nitride
title_full_unstemmed Direct band-gap crossover in epitaxial monolayer boron nitride
title_short Direct band-gap crossover in epitaxial monolayer boron nitride
title_sort direct band-gap crossover in epitaxial monolayer boron nitride
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572751/
https://www.ncbi.nlm.nih.gov/pubmed/31201328
http://dx.doi.org/10.1038/s41467-019-10610-5
work_keys_str_mv AT eliasc directbandgapcrossoverinepitaxialmonolayerboronnitride
AT valvinp directbandgapcrossoverinepitaxialmonolayerboronnitride
AT pelinit directbandgapcrossoverinepitaxialmonolayerboronnitride
AT summerfielda directbandgapcrossoverinepitaxialmonolayerboronnitride
AT mellorcj directbandgapcrossoverinepitaxialmonolayerboronnitride
AT chengts directbandgapcrossoverinepitaxialmonolayerboronnitride
AT eavesl directbandgapcrossoverinepitaxialmonolayerboronnitride
AT foxonct directbandgapcrossoverinepitaxialmonolayerboronnitride
AT betonph directbandgapcrossoverinepitaxialmonolayerboronnitride
AT novikovsv directbandgapcrossoverinepitaxialmonolayerboronnitride
AT gilb directbandgapcrossoverinepitaxialmonolayerboronnitride
AT cassaboisg directbandgapcrossoverinepitaxialmonolayerboronnitride