Cargando…
Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks
Image processing can be used to extract meaningful optical results from images. Here, from images of plasmonic structures, we combined convolutional neural networks with recurrent neural networks to extract the absorption spectra of structures. To provide the data required for the model, we performe...
Autores principales: | Sajedian, Iman, Kim, Jeonghyun, Rho, Junsuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572799/ https://www.ncbi.nlm.nih.gov/pubmed/31240107 http://dx.doi.org/10.1038/s41378-019-0069-y |
Ejemplares similares
-
Deep Q-network to produce polarization-independent perfect solar absorbers: a statistical report
por: Sajedian, Iman, et al.
Publicado: (2020) -
Accurate and instant frequency estimation from noisy sinusoidal waves by deep learning
por: Sajedian, Iman, et al.
Publicado: (2019) -
Double-deep Q-learning to increase the efficiency of metasurface holograms
por: Sajedian, Iman, et al.
Publicado: (2019) -
Data-driven prediction and control of wastewater treatment process through the combination of convolutional neural network and recurrent neural network
por: Guo, Zhiwei, et al.
Publicado: (2020) -
A combined convolutional and recurrent neural network for enhanced glaucoma detection
por: Gheisari, Soheila, et al.
Publicado: (2021)