Cargando…

PET-RAFT Polymerization Catalyzed by Small Organic Molecule under Green Light Irradiation

Photocatalyzed polymerization using organic molecules as catalysts has attracted broad interest because of its easy operation in ambient environments and low toxicity compared with metallic catalysts. In this work, we reported that 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) can act as an...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Huazhen, Xia, Lei, Chen, Guang, Zeng, Tianyou, Nie, Xuan, Zhang, Ze, You, Yezi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572999/
https://www.ncbi.nlm.nih.gov/pubmed/31096643
http://dx.doi.org/10.3390/polym11050892
Descripción
Sumario:Photocatalyzed polymerization using organic molecules as catalysts has attracted broad interest because of its easy operation in ambient environments and low toxicity compared with metallic catalysts. In this work, we reported that 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) can act as an efficient photoredox catalyst for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under green light irradiation. Well-defined (co)polymers can be obtained using this technique without any additional additives like noble metals and electron donors or acceptors. The living characteristics of polymerization were verified by kinetic study and the narrow dispersity (Đ) of the produced polymer. Excellent chain-end fidelity was demonstrated through chain extension as well. In addition, this technique showed great potential for various RAFT agents and monomers including acrylates and acrylamides.