Cargando…
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
Understanding the dynamical processes that govern the performance of functional materials is essential for the design of next generation materials to tackle global energy and environmental challenges. Many of these processes involve the dynamics of individual atoms or small molecules in condensed ph...
Autores principales: | Xie, Tian, France-Lanord, Arthur, Wang, Yanming, Shao-Horn, Yang, Grossman, Jeffrey C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6573035/ https://www.ncbi.nlm.nih.gov/pubmed/31209223 http://dx.doi.org/10.1038/s41467-019-10663-6 |
Ejemplares similares
-
Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties
por: Xie, Tian, et al.
Publicado: (2022) -
Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene
por: Sinha, Sapna, et al.
Publicado: (2020) -
Dynamic Graph Clustering Learning for Unsupervised Diabetic Retinopathy Classification
por: Yu, Chenglin, et al.
Publicado: (2023) -
Unsupervised Embedding Learning for Large-Scale Heterogeneous Networks Based on Metapath Graph Sampling
por: Zhong, Hongwei, et al.
Publicado: (2023) -
Laplacian mixture modeling for network analysis and unsupervised learning on graphs
por: Korenblum, Daniel
Publicado: (2018)