Cargando…
Evaluating the predictability of medical conditions from social media posts
We studied whether medical conditions across 21 broad categories were predictable from social media content across approximately 20 million words written by 999 consenting patients. Facebook language significantly improved upon the prediction accuracy of demographic variables for 18 of the 21 diseas...
Autores principales: | Merchant, Raina M., Asch, David A., Crutchley, Patrick, Ungar, Lyle H., Guntuku, Sharath C., Eichstaedt, Johannes C., Hill, Shawndra, Padrez, Kevin, Smith, Robert J., Schwartz, H. Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576767/ https://www.ncbi.nlm.nih.gov/pubmed/31206534 http://dx.doi.org/10.1371/journal.pone.0215476 |
Ejemplares similares
-
Variability in Language used on Social Media prior to Hospital Visits
por: Guntuku, Sharath Chandra, et al.
Publicado: (2020) -
Social media language of healthcare super-utilizers
por: Guntuku, Sharath Chandra, et al.
Publicado: (2021) -
Author Correction: Variability in Language used on Social Media Prior to Hospital Visits
por: Guntuku, Sharath Chandra, et al.
Publicado: (2020) -
Variations in Facebook Posting Patterns Across Validated Patient Health Conditions: A Prospective Cohort Study
por: Smith, Robert J, et al.
Publicado: (2017) -
Predicting Cardiovascular Risk Using Social Media Data: Performance Evaluation of Machine-Learning Models
por: Andy, Anietie U, et al.
Publicado: (2021)