Cargando…

Neuronal Small RNAs Control Behavior Transgenerationally

It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neur...

Descripción completa

Detalles Bibliográficos
Autores principales: Posner, Rachel, Toker, Itai Antoine, Antonova, Olga, Star, Ekaterina, Anava, Sarit, Azmon, Eran, Hendricks, Michael, Bracha, Shahar, Gingold, Hila, Rechavi, Oded
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579485/
https://www.ncbi.nlm.nih.gov/pubmed/31178120
http://dx.doi.org/10.1016/j.cell.2019.04.029
Descripción
Sumario:It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally.