Cargando…

Anatomical and physiological foundations of cerebello-hippocampal interaction

Multiple lines of evidence suggest that functionally intact cerebello-hippocampal interactions are required for appropriate spatial processing. However, how the cerebellum anatomically and physiologically engages with the hippocampus to sustain such communication remains unknown. Using rabies virus...

Descripción completa

Detalles Bibliográficos
Autores principales: Watson, Thomas Charles, Obiang, Pauline, Torres-Herraez, Arturo, Watilliaux, Aurélie, Coulon, Patrice, Rochefort, Christelle, Rondi-Reig, Laure
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579515/
https://www.ncbi.nlm.nih.gov/pubmed/31205000
http://dx.doi.org/10.7554/eLife.41896
Descripción
Sumario:Multiple lines of evidence suggest that functionally intact cerebello-hippocampal interactions are required for appropriate spatial processing. However, how the cerebellum anatomically and physiologically engages with the hippocampus to sustain such communication remains unknown. Using rabies virus as a retrograde transneuronal tracer in mice, we reveal that the dorsal hippocampus receives input from topographically restricted and disparate regions of the cerebellum. By simultaneously recording local field potential from both the dorsal hippocampus and anatomically connected cerebellar regions, we additionally suggest that the two structures interact, in a behaviorally dynamic manner, through subregion-specific synchronization of neuronal oscillations in the 6–12 Hz frequency range. Together, these results reveal a novel neural network macro-architecture through which we can understand how a brain region classically associated with motor control, the cerebellum, may influence hippocampal neuronal activity and related functions, such as spatial navigation.