Cargando…
Light Sheet Microscopy in the Near-Infrared II Window
Deep-tissue three-dimensional (3D) optical imaging of live mammals with high spatiotemporal resolution in non-invasive manners has been challenging due to light scattering. Here, we developed near-infrared II (NIR-II, 1000–1700 nm) light sheet microscopy (LSM) with excitation and emission up to ~ 13...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579541/ https://www.ncbi.nlm.nih.gov/pubmed/31086342 http://dx.doi.org/10.1038/s41592-019-0398-7 |
Sumario: | Deep-tissue three-dimensional (3D) optical imaging of live mammals with high spatiotemporal resolution in non-invasive manners has been challenging due to light scattering. Here, we developed near-infrared II (NIR-II, 1000–1700 nm) light sheet microscopy (LSM) with excitation and emission up to ~ 1320 nm and ~ 1700 nm respectively for optical sectioning through live tissues at ~ 750-μm penetration depth without any invasive surgery. Suppressed light scattering allowed imaging at ~ 2 mm depth in glycerol-cleared brain tissues. NIR-II LSM in normal and oblique configurations enabled in vivo imaging of live mice through intact tissue, revealing abnormal blood flow and T cell motion in tumor microcirculation and mapping out programmed-death ligand 1 (PD-L1) and programmed cell death protein 1 (PD-1) in tumors with cellular resolution. 3D imaging through intact mouse head resolved vascular channels between skull and brain cortex, and monitored recruitment of macrophages/microglia to traumatic brain injury site post injury. |
---|