Cargando…
Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations
Development of machine learning solutions for prediction of functional and clinical significance of cancer driver genes and mutations are paramount in modern biomedical research and have gained a significant momentum in a recent decade. In this work, we integrate different machine learning approache...
Autores principales: | Agajanian, Steve, Oluyemi, Odeyemi, Verkhivker, Gennady M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579812/ https://www.ncbi.nlm.nih.gov/pubmed/31245384 http://dx.doi.org/10.3389/fmolb.2019.00044 |
Ejemplares similares
-
Editorial: Machine Learning in Biomolecular Simulations
por: Verkhivker, Gennady, et al.
Publicado: (2019) -
Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning
por: Verkhivker, Gennady M., et al.
Publicado: (2020) -
Editorial: Hybrid Biomolecular Modeling
por: Jonic, Slavica, et al.
Publicado: (2018) -
Random forest classifier improving phenylketonuria screening performance in two Chinese populations
por: Song, Yingnan, et al.
Publicado: (2022) -
Integrated Computational Approaches and Tools for Allosteric Drug Discovery
por: Sheik Amamuddy, Olivier, et al.
Publicado: (2020)