Cargando…

Overexpression of microRNA-216a inhibits autophagy by targeting regulated MAP1S in colorectal cancer

Background: Autophagy executes the rapid degradation of unneeded proteins and organelles through the lysosomal pathway, and is a crucial catabolic process widely conserved among eukaryotes. miRNAs can modulate autophagy by targeting genes encoding proteins involved in the process. A great deal of re...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yunfeng, Zhang, Songyan, Dang, Shuwei, Fang, Xuan, Liu, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580140/
https://www.ncbi.nlm.nih.gov/pubmed/31354295
http://dx.doi.org/10.2147/OTT.S196992
Descripción
Sumario:Background: Autophagy executes the rapid degradation of unneeded proteins and organelles through the lysosomal pathway, and is a crucial catabolic process widely conserved among eukaryotes. miRNAs can modulate autophagy by targeting genes encoding proteins involved in the process. A great deal of researchhas indicated that miR-216a was a functional miRNA related to tumorigenesis. However, the contribution of miR-216a to autophagy in colorectal cancer (CRC) remains unclear. The purpose of this study was to investigate the role of miR-216a in autophagy in CRC cells. Methods: The expression levels of miR-216a in 67 paired CRC patients were evaluated by qRT-PCR. Direct gene targeting predicted by TargetScan and miRanda was confirmed by luciferase activity. Western blot and flow cytometry were used to identify the regulatory mechanism of miR-216a on autophagy in CRC cells. Results: We determined that miR-216a is downregulated in CRC by screening its expression in 67 CRC tissue samples. Dual luciferase reporter assays showed that miR-216a binds the 3′-UTR of MAP1S, suggesting that MAP1S is a direct target of miR-216a. miR-216a could inhibit autophagy in HCT-116 and HT-29 CRC cells through downregulating MAP1S expression. Flow cytometry and Western blot analysis demonstrated that overexpression of miR-216a reduced MAP1S mRNA and protein levels. Moreover, we determined that miR-216a-regulated inhibition of autophagy via MAP1S regulation involves the TGF-β pathway. Conclusion: Taken together, our findings indicate that miR-216a was a tumor-suppressor miRNA in human CRC, which can inhibit autophagy via the TGF-β/MAP1S pathway.