Cargando…
Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway
BACKGROUND: Discovery and development of novel drugs that are capable of overcoming drug resistance in tumor cells are urgently needed clinically. In this study, we sought to explore whether ivermectin (IVM), a macrolide antiparasitic agent, could overcome the resistance of cancer cells to the thera...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580523/ https://www.ncbi.nlm.nih.gov/pubmed/31215501 http://dx.doi.org/10.1186/s13046-019-1251-7 |
_version_ | 1783428038034194432 |
---|---|
author | Jiang, Lu Wang, Pan Sun, Ying-Jian Wu, Yi-Jun |
author_facet | Jiang, Lu Wang, Pan Sun, Ying-Jian Wu, Yi-Jun |
author_sort | Jiang, Lu |
collection | PubMed |
description | BACKGROUND: Discovery and development of novel drugs that are capable of overcoming drug resistance in tumor cells are urgently needed clinically. In this study, we sought to explore whether ivermectin (IVM), a macrolide antiparasitic agent, could overcome the resistance of cancer cells to the therapeutic drugs. METHODS: We used two solid tumor cell lines (HCT-8 colorectal cancer cells and MCF-7 breast cancer cells) and one hematologic tumor cell line (K562 chronic myeloid leukemia cells), which are resistant to the chemotherapeutic drugs vincristine and adriamycin respectively, and two xenograft mice models, including the solid tumor model in nude mice with the resistant HCT-8 cells and the leukemia model in NOD/SCID mice with the resistant K562 cells to investigate the reversal effect of IVM on the resistance in vitro and in vivo. MTT assay was used to investigate the effect of IVM on cancer cells growth in vitro. Flow cytometry, immunohistochemistry, and immunofluorescence were performed to investigate the reversal effect of IVM in vivo. Western blotting, qPCR, luciferase reporter assay and ChIP assay were used to detect the molecular mechanism of the reversal effect. Octet RED96 system and Co-IP were used to determine the interactions between IVM and EGFR. RESULTS: Our results indicated that ivermectin at its very low dose, which did not induce obvious cytotoxicity, drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo. Mechanistically, ivermectin reversed the resistance mainly by reducing the expression of P-glycoprotein (P-gp) via inhibiting the epidermal growth factor receptor (EGFR), not by directly inhibiting P-gp activity. Ivermectin bound with the extracellular domain of EGFR, which inhibited the activation of EGFR and its downstream signaling cascade ERK/Akt/NF-κB. The inhibition of the transcriptional factor NF-κB led to the reduced P-gp transcription. CONCLUSIONS: These findings demonstrated that ivermectin significantly enhanced the anti-cancer efficacy of chemotherapeutic drugs to tumor cells, especially in the drug-resistant cells. Thus, ivermectin, a FDA-approved antiparasitic drug, could potentially be used in combination with chemotherapeutic agents to treat cancers and in particular, the drug-resistant cancers. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1251-7) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6580523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65805232019-06-24 Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway Jiang, Lu Wang, Pan Sun, Ying-Jian Wu, Yi-Jun J Exp Clin Cancer Res Research BACKGROUND: Discovery and development of novel drugs that are capable of overcoming drug resistance in tumor cells are urgently needed clinically. In this study, we sought to explore whether ivermectin (IVM), a macrolide antiparasitic agent, could overcome the resistance of cancer cells to the therapeutic drugs. METHODS: We used two solid tumor cell lines (HCT-8 colorectal cancer cells and MCF-7 breast cancer cells) and one hematologic tumor cell line (K562 chronic myeloid leukemia cells), which are resistant to the chemotherapeutic drugs vincristine and adriamycin respectively, and two xenograft mice models, including the solid tumor model in nude mice with the resistant HCT-8 cells and the leukemia model in NOD/SCID mice with the resistant K562 cells to investigate the reversal effect of IVM on the resistance in vitro and in vivo. MTT assay was used to investigate the effect of IVM on cancer cells growth in vitro. Flow cytometry, immunohistochemistry, and immunofluorescence were performed to investigate the reversal effect of IVM in vivo. Western blotting, qPCR, luciferase reporter assay and ChIP assay were used to detect the molecular mechanism of the reversal effect. Octet RED96 system and Co-IP were used to determine the interactions between IVM and EGFR. RESULTS: Our results indicated that ivermectin at its very low dose, which did not induce obvious cytotoxicity, drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo. Mechanistically, ivermectin reversed the resistance mainly by reducing the expression of P-glycoprotein (P-gp) via inhibiting the epidermal growth factor receptor (EGFR), not by directly inhibiting P-gp activity. Ivermectin bound with the extracellular domain of EGFR, which inhibited the activation of EGFR and its downstream signaling cascade ERK/Akt/NF-κB. The inhibition of the transcriptional factor NF-κB led to the reduced P-gp transcription. CONCLUSIONS: These findings demonstrated that ivermectin significantly enhanced the anti-cancer efficacy of chemotherapeutic drugs to tumor cells, especially in the drug-resistant cells. Thus, ivermectin, a FDA-approved antiparasitic drug, could potentially be used in combination with chemotherapeutic agents to treat cancers and in particular, the drug-resistant cancers. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1251-7) contains supplementary material, which is available to authorized users. BioMed Central 2019-06-18 /pmc/articles/PMC6580523/ /pubmed/31215501 http://dx.doi.org/10.1186/s13046-019-1251-7 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Jiang, Lu Wang, Pan Sun, Ying-Jian Wu, Yi-Jun Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway |
title | Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway |
title_full | Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway |
title_fullStr | Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway |
title_full_unstemmed | Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway |
title_short | Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway |
title_sort | ivermectin reverses the drug resistance in cancer cells through egfr/erk/akt/nf-κb pathway |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580523/ https://www.ncbi.nlm.nih.gov/pubmed/31215501 http://dx.doi.org/10.1186/s13046-019-1251-7 |
work_keys_str_mv | AT jianglu ivermectinreversesthedrugresistanceincancercellsthroughegfrerkaktnfkbpathway AT wangpan ivermectinreversesthedrugresistanceincancercellsthroughegfrerkaktnfkbpathway AT sunyingjian ivermectinreversesthedrugresistanceincancercellsthroughegfrerkaktnfkbpathway AT wuyijun ivermectinreversesthedrugresistanceincancercellsthroughegfrerkaktnfkbpathway |