Cargando…
Automated Classification of Malignant and Benign Breast Cancer Lesions Using Neural Networks on Digitized Mammograms
We propose a novel neural network approach for the classification of abnormal mammographic images into benign or malignant based on their texture representations. The proposed framework has the capability of mapping high dimensional feature space into a lower-dimension, in a supervised way. The main...
Autores principales: | Abdelsamea, Mohammed M, Mohamed, Marghny H, Bamatraf, Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580711/ https://www.ncbi.nlm.nih.gov/pubmed/31244522 http://dx.doi.org/10.1177/1176935119857570 |
Ejemplares similares
-
Kinetic patterns of benign and malignant breast lesions on contrast enhanced digital mammogram
por: Huang, Jer-Shyung, et al.
Publicado: (2020) -
Automated Classification of Benign and Malignant Proliferative Breast Lesions
por: Radiya-Dixit, Evani, et al.
Publicado: (2017) -
XDecompo: Explainable Decomposition Approach in Convolutional Neural Networks for Tumour Image Classification
por: Abbas, Asmaa, et al.
Publicado: (2022) -
Architectural Distortion-Based Digital Mammograms Classification Using Depth Wise Convolutional Neural Network
por: Rehman, Khalil ur, et al.
Publicado: (2021) -
Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
por: Abbas, Asmaa, et al.
Publicado: (2020)