Cargando…
Construction and disruption of spatial memory networks during development
Spatial memory, the aspect of memory involving encoding and retrieval of information regarding one's environment and spatial orientation, is a complex biological function incorporating multiple neuronal networks. Hippocampus-dependent spatial memory is not innate and emerges during development...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581006/ https://www.ncbi.nlm.nih.gov/pubmed/31209115 http://dx.doi.org/10.1101/lm.049239.118 |
_version_ | 1783428117264596992 |
---|---|
author | Baram, Tallie Z. Donato, Flavio Holmes, Gregory L. |
author_facet | Baram, Tallie Z. Donato, Flavio Holmes, Gregory L. |
author_sort | Baram, Tallie Z. |
collection | PubMed |
description | Spatial memory, the aspect of memory involving encoding and retrieval of information regarding one's environment and spatial orientation, is a complex biological function incorporating multiple neuronal networks. Hippocampus-dependent spatial memory is not innate and emerges during development in both humans and rodents. In children, nonhippocampal dependent egocentric (self-to-object) memory develops before hippocampal-dependent allocentric (object-to-object) memory. The onset of allocentric spatial memory abilities in children around 22 mo of age occurs at an age-equivalent time in rodents when spatially tuned grid and place cells arise from patterned activity propagating through the entorhinal–hippocampal circuit. Neuronal activity, often driven by specific sensory signals, is critical for the normal maturation of brain circuits This patterned activity fine-tunes synaptic connectivity of the network and drives the emergence of specific firing necessary for spatial memory. Whereas normal activity patterns are required for circuit maturation, aberrant neuronal activity during development can have major adverse consequences, disrupting the development of spatial memory. Seizures during infancy, involving massive bursts of synchronized network activity, result in impaired spatial memory when animals are tested as adolescents or adults. This impaired spatial memory is accompanied by alterations in spatial and temporal coding of place cells. The molecular mechanisms by which early-life seizures lead to disruptions at the cellular and network levels are now becoming better understood, and provide a target for intervention, potentially leading to improved cognitive outcome in individuals experiencing early-life seizures. |
format | Online Article Text |
id | pubmed-6581006 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-65810062020-07-01 Construction and disruption of spatial memory networks during development Baram, Tallie Z. Donato, Flavio Holmes, Gregory L. Learn Mem Review Spatial memory, the aspect of memory involving encoding and retrieval of information regarding one's environment and spatial orientation, is a complex biological function incorporating multiple neuronal networks. Hippocampus-dependent spatial memory is not innate and emerges during development in both humans and rodents. In children, nonhippocampal dependent egocentric (self-to-object) memory develops before hippocampal-dependent allocentric (object-to-object) memory. The onset of allocentric spatial memory abilities in children around 22 mo of age occurs at an age-equivalent time in rodents when spatially tuned grid and place cells arise from patterned activity propagating through the entorhinal–hippocampal circuit. Neuronal activity, often driven by specific sensory signals, is critical for the normal maturation of brain circuits This patterned activity fine-tunes synaptic connectivity of the network and drives the emergence of specific firing necessary for spatial memory. Whereas normal activity patterns are required for circuit maturation, aberrant neuronal activity during development can have major adverse consequences, disrupting the development of spatial memory. Seizures during infancy, involving massive bursts of synchronized network activity, result in impaired spatial memory when animals are tested as adolescents or adults. This impaired spatial memory is accompanied by alterations in spatial and temporal coding of place cells. The molecular mechanisms by which early-life seizures lead to disruptions at the cellular and network levels are now becoming better understood, and provide a target for intervention, potentially leading to improved cognitive outcome in individuals experiencing early-life seizures. Cold Spring Harbor Laboratory Press 2019-07 /pmc/articles/PMC6581006/ /pubmed/31209115 http://dx.doi.org/10.1101/lm.049239.118 Text en © 2019 Baram et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Review Baram, Tallie Z. Donato, Flavio Holmes, Gregory L. Construction and disruption of spatial memory networks during development |
title | Construction and disruption of spatial memory networks during development |
title_full | Construction and disruption of spatial memory networks during development |
title_fullStr | Construction and disruption of spatial memory networks during development |
title_full_unstemmed | Construction and disruption of spatial memory networks during development |
title_short | Construction and disruption of spatial memory networks during development |
title_sort | construction and disruption of spatial memory networks during development |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581006/ https://www.ncbi.nlm.nih.gov/pubmed/31209115 http://dx.doi.org/10.1101/lm.049239.118 |
work_keys_str_mv | AT baramtalliez constructionanddisruptionofspatialmemorynetworksduringdevelopment AT donatoflavio constructionanddisruptionofspatialmemorynetworksduringdevelopment AT holmesgregoryl constructionanddisruptionofspatialmemorynetworksduringdevelopment |