Cargando…
Machine Learning Versus Logistic Regression Methods for 2-Year Mortality Prognostication in a Small, Heterogeneous Glioma Database
BACKGROUND: Machine learning (ML) is the application of specialized algorithms to datasets for trend delineation, categorization, or prediction. ML techniques have been traditionally applied to large, highly dimensional databases. Gliomas are a heterogeneous group of primary brain tumors, traditiona...
Autores principales: | Panesar, Sandip S., D'Souza, Rhett N., Yeh, Fang-Cheng, Fernandez-Miranda, Juan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581022/ https://www.ncbi.nlm.nih.gov/pubmed/31218287 http://dx.doi.org/10.1016/j.wnsx.2019.100012 |
Ejemplares similares
-
Logistic Regression for Machine Learning in Process Tomography
por: Rymarczyk, Tomasz, et al.
Publicado: (2019) -
Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies
por: Verplancke, T, et al.
Publicado: (2008) -
Prediction of hospital mortality by support vector machine versus logistic regression in patients with a haematological malignancy admitted to the ICU
por: Verplancke, T, et al.
Publicado: (2008) -
Calculus of thought: neuromorphic logistic regression in cognitive machines
por: Rice, Daniel M
Publicado: (2014) -
Novel Method of Classification in Knee Osteoarthritis: Machine Learning Application Versus Logistic Regression Model
por: Yang, Jung Ho, et al.
Publicado: (2020)