Cargando…

Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model

[Image: see text] In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular elec...

Descripción completa

Detalles Bibliográficos
Autores principales: Visscher, Koen M., Geerke, Daan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581419/
https://www.ncbi.nlm.nih.gov/pubmed/30763086
http://dx.doi.org/10.1021/acs.jctc.8b01105
_version_ 1783428163223683072
author Visscher, Koen M.
Geerke, Daan P.
author_facet Visscher, Koen M.
Geerke, Daan P.
author_sort Visscher, Koen M.
collection PubMed
description [Image: see text] In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular electron densities into atomic subregions. The partitioned atomic densities are subsequently used to compute atomic dispersion coefficients from effective exchange-hole-dipole moment (XDM) calculations. In order to derive values for the repulsive van der Waals parameters from first principles, we use a simple volume relation to scale effective atomic radii. Explicit inclusion of higher order dispersion coefficients was tested for a series of alkanes, and we show that combining C(6) and C(8) attractive terms together with a C(11) repulsive potential yields satisfying models when used in combination with our van der Waals parameters and electrostatic and bonded parameters as directly obtained from quantum calculations as well. This result highlights that explicit inclusion of higher order dispersion terms could be viable in simulation, and it suggests that currently available QM analysis methods allow for first-principles parametrization of molecular mechanics models.
format Online
Article
Text
id pubmed-6581419
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-65814192019-06-20 Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model Visscher, Koen M. Geerke, Daan P. J Chem Theory Comput [Image: see text] In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular electron densities into atomic subregions. The partitioned atomic densities are subsequently used to compute atomic dispersion coefficients from effective exchange-hole-dipole moment (XDM) calculations. In order to derive values for the repulsive van der Waals parameters from first principles, we use a simple volume relation to scale effective atomic radii. Explicit inclusion of higher order dispersion coefficients was tested for a series of alkanes, and we show that combining C(6) and C(8) attractive terms together with a C(11) repulsive potential yields satisfying models when used in combination with our van der Waals parameters and electrostatic and bonded parameters as directly obtained from quantum calculations as well. This result highlights that explicit inclusion of higher order dispersion terms could be viable in simulation, and it suggests that currently available QM analysis methods allow for first-principles parametrization of molecular mechanics models. American Chemical Society 2019-02-14 2019-03-12 /pmc/articles/PMC6581419/ /pubmed/30763086 http://dx.doi.org/10.1021/acs.jctc.8b01105 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Visscher, Koen M.
Geerke, Daan P.
Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model
title Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model
title_full Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model
title_fullStr Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model
title_full_unstemmed Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model
title_short Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model
title_sort deriving force-field parameters from first principles using a polarizable and higher order dispersion model
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581419/
https://www.ncbi.nlm.nih.gov/pubmed/30763086
http://dx.doi.org/10.1021/acs.jctc.8b01105
work_keys_str_mv AT visscherkoenm derivingforcefieldparametersfromfirstprinciplesusingapolarizableandhigherorderdispersionmodel
AT geerkedaanp derivingforcefieldparametersfromfirstprinciplesusingapolarizableandhigherorderdispersionmodel