Cargando…
Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model
[Image: see text] In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular elec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581419/ https://www.ncbi.nlm.nih.gov/pubmed/30763086 http://dx.doi.org/10.1021/acs.jctc.8b01105 |
_version_ | 1783428163223683072 |
---|---|
author | Visscher, Koen M. Geerke, Daan P. |
author_facet | Visscher, Koen M. Geerke, Daan P. |
author_sort | Visscher, Koen M. |
collection | PubMed |
description | [Image: see text] In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular electron densities into atomic subregions. The partitioned atomic densities are subsequently used to compute atomic dispersion coefficients from effective exchange-hole-dipole moment (XDM) calculations. In order to derive values for the repulsive van der Waals parameters from first principles, we use a simple volume relation to scale effective atomic radii. Explicit inclusion of higher order dispersion coefficients was tested for a series of alkanes, and we show that combining C(6) and C(8) attractive terms together with a C(11) repulsive potential yields satisfying models when used in combination with our van der Waals parameters and electrostatic and bonded parameters as directly obtained from quantum calculations as well. This result highlights that explicit inclusion of higher order dispersion terms could be viable in simulation, and it suggests that currently available QM analysis methods allow for first-principles parametrization of molecular mechanics models. |
format | Online Article Text |
id | pubmed-6581419 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-65814192019-06-20 Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model Visscher, Koen M. Geerke, Daan P. J Chem Theory Comput [Image: see text] In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular electron densities into atomic subregions. The partitioned atomic densities are subsequently used to compute atomic dispersion coefficients from effective exchange-hole-dipole moment (XDM) calculations. In order to derive values for the repulsive van der Waals parameters from first principles, we use a simple volume relation to scale effective atomic radii. Explicit inclusion of higher order dispersion coefficients was tested for a series of alkanes, and we show that combining C(6) and C(8) attractive terms together with a C(11) repulsive potential yields satisfying models when used in combination with our van der Waals parameters and electrostatic and bonded parameters as directly obtained from quantum calculations as well. This result highlights that explicit inclusion of higher order dispersion terms could be viable in simulation, and it suggests that currently available QM analysis methods allow for first-principles parametrization of molecular mechanics models. American Chemical Society 2019-02-14 2019-03-12 /pmc/articles/PMC6581419/ /pubmed/30763086 http://dx.doi.org/10.1021/acs.jctc.8b01105 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Visscher, Koen M. Geerke, Daan P. Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model |
title | Deriving Force-Field Parameters from First Principles
Using a Polarizable and Higher Order Dispersion Model |
title_full | Deriving Force-Field Parameters from First Principles
Using a Polarizable and Higher Order Dispersion Model |
title_fullStr | Deriving Force-Field Parameters from First Principles
Using a Polarizable and Higher Order Dispersion Model |
title_full_unstemmed | Deriving Force-Field Parameters from First Principles
Using a Polarizable and Higher Order Dispersion Model |
title_short | Deriving Force-Field Parameters from First Principles
Using a Polarizable and Higher Order Dispersion Model |
title_sort | deriving force-field parameters from first principles
using a polarizable and higher order dispersion model |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581419/ https://www.ncbi.nlm.nih.gov/pubmed/30763086 http://dx.doi.org/10.1021/acs.jctc.8b01105 |
work_keys_str_mv | AT visscherkoenm derivingforcefieldparametersfromfirstprinciplesusingapolarizableandhigherorderdispersionmodel AT geerkedaanp derivingforcefieldparametersfromfirstprinciplesusingapolarizableandhigherorderdispersionmodel |