Cargando…
Evolutionary Approach to Constructing a Deep Feedforward Neural Network for Prediction of Electronic Coupling Elements in Molecular Materials
[Image: see text] We present a general framework for the construction of a deep feedforward neural network (FFNN) to predict distance and orientation dependent electronic coupling elements in disordered molecular materials. An evolutionary algorithm automatizes the selection of an optimal architectu...
Autores principales: | Çaylak, Onur, Yaman, Anil, Baumeier, Björn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581422/ https://www.ncbi.nlm.nih.gov/pubmed/30753071 http://dx.doi.org/10.1021/acs.jctc.8b01285 |
Ejemplares similares
-
Excited-State Geometry Optimization of Small Molecules
with Many-Body Green’s Functions Theory
por: Çaylak, Onur, et al.
Publicado: (2021) -
Machine Learning of Quasiparticle Energies in Molecules
and Clusters
por: Çaylak, Onur, et al.
Publicado: (2021) -
Electronic Excitations in Complex Molecular Environments:
Many-Body Green’s Functions Theory in VOTCA-XTP
por: Wehner, Jens, et al.
Publicado: (2018) -
BatTS: a hybrid method for optimizing deep feedforward neural network
por: Pan, Sichen, et al.
Publicado: (2023) -
Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks
por: Liu, Yang, et al.
Publicado: (2017)