Cargando…
Comparative Exploratory Analysis of Intrinsically Disordered Protein Dynamics Using Machine Learning and Network Analytic Methods
Simulations of intrinsically disordered proteins (IDPs) pose numerous challenges to comparative analysis, prominently including highly dynamic conformational states and a lack of well-defined secondary structure. Machine learning (ML) algorithms are especially effective at discriminating among high-...
Autores principales: | Grazioli, Gianmarc, Martin, Rachel W., Butts, Carter T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581705/ https://www.ncbi.nlm.nih.gov/pubmed/31245383 http://dx.doi.org/10.3389/fmolb.2019.00042 |
Ejemplares similares
-
Investigating Intrinsically Disordered Proteins With Brownian Dynamics
por: Ahn, Surl-Hee, et al.
Publicado: (2022) -
Using Small-Angle Scattering Data and Parametric Machine Learning to Optimize Force Field Parameters for Intrinsically Disordered Proteins
por: Demerdash, Omar, et al.
Publicado: (2019) -
Crowding Effects on the Structure and Dynamics of the Intrinsically Disordered Nuclear Chromatin Protein NUPR1
por: Bonucci, Alessio, et al.
Publicado: (2021) -
Network Hamiltonian models reveal pathways to amyloid fibril formation
por: Yu, Yue, et al.
Publicado: (2020) -
Editorial: Molecular Dynamics and Machine Learning in Drug Discovery
por: Decherchi, Sergio, et al.
Publicado: (2021)