Cargando…
SAE+LSTM: A New Framework for Emotion Recognition From Multi-Channel EEG
EEG-based automatic emotion recognition can help brain-inspired robots in improving their interactions with humans. This paper presents a novel framework for emotion recognition using multi-channel electroencephalogram (EEG). The framework consists of a linear EEG mixing model and an emotion timing...
Autores principales: | Xing, Xiaofen, Li, Zhenqi, Xu, Tianyuan, Shu, Lin, Hu, Bin, Xu, Xiangmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581731/ https://www.ncbi.nlm.nih.gov/pubmed/31244638 http://dx.doi.org/10.3389/fnbot.2019.00037 |
Ejemplares similares
-
Adolescents Environmental Emotion Perception by Integrating EEG and Eye Movements
por: Su, Yuanyuan, et al.
Publicado: (2019) -
Emotion Recognition for Human-Robot Interaction: Recent Advances and Future Perspectives
por: Spezialetti, Matteo, et al.
Publicado: (2020) -
AntAlate—A Multi-Agent Autonomy Framework
por: Dovrat, David, et al.
Publicado: (2021) -
Multi-Channel Interactive Reinforcement Learning for Sequential Tasks
por: Koert, Dorothea, et al.
Publicado: (2020) -
Multi-dimensional task recognition for human-robot teaming: literature review
por: Baskaran, Prakash, et al.
Publicado: (2023)