Cargando…
Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks
Recent advances in image acquisition and processing techniques, along with the success of novel deep learning architectures, have given the opportunity to develop innovative algorithms capable to provide a better characterization of neurological related diseases. In this work, we introduce a neural...
Autores principales: | Marzullo, Aldo, Kocevar, Gabriel, Stamile, Claudio, Durand-Dubief, Françoise, Terracina, Giorgio, Calimeri, Francesco, Sappey-Marinier, Dominique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581753/ https://www.ncbi.nlm.nih.gov/pubmed/31244599 http://dx.doi.org/10.3389/fnins.2019.00594 |
Ejemplares similares
-
Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses
por: Kocevar, Gabriel, et al.
Publicado: (2016) -
Classification of multiple sclerosis clinical profiles using machine learning and grey matter connectome
por: Barile, Berardino, et al.
Publicado: (2022) -
Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features
por: Ion-Mărgineanu, Adrian, et al.
Publicado: (2017) -
A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis
por: Stamile, Claudio, et al.
Publicado: (2016) -
Hemispheric Differences in White Matter Microstructure between Two Profiles of Children with High Intelligence Quotient vs. Controls: A Tract-Based Spatial Statistics Study
por: Nusbaum, Fanny, et al.
Publicado: (2017)