Cargando…

Tad Pili Play a Dynamic Role in Caulobacter crescentus Surface Colonization

Bacterial surface attachment is mediated by filamentous appendages called pili. Here, we describe the role of Tad pili during surface colonization of Caulobacter crescentus. Using an optical trap and microfluidic controlled flow conditions to mimic natural environments, we demonstrated that Tad pili...

Descripción completa

Detalles Bibliográficos
Autores principales: Sangermani, Matteo, Hug, Isabelle, Sauter, Nora, Pfohl, Thomas, Jenal, Urs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581867/
https://www.ncbi.nlm.nih.gov/pubmed/31213565
http://dx.doi.org/10.1128/mBio.01237-19
Descripción
Sumario:Bacterial surface attachment is mediated by filamentous appendages called pili. Here, we describe the role of Tad pili during surface colonization of Caulobacter crescentus. Using an optical trap and microfluidic controlled flow conditions to mimic natural environments, we demonstrated that Tad pili undergo repeated dynamic cycles of extension and retraction. Within seconds after establishing surface contact, pilus retraction reorients cells into an upright position, promoting walking-like movements against the medium flow. Pilus-mediated positioning of the flagellate pole close to the surface facilitates motor-mediated mechanical sensing and promotes anchoring of the holdfast, an adhesive substance that affords long-term attachment. We present evidence that the second messenger c-di-GMP regulates pilus dynamics during surface encounter in distinct ways, promoting increased activity at intermediate levels and retraction of pili at peak concentrations. We propose a model in which flagellum and Tad pili functionally interact and together impose a ratchet-like mechanism that progressively drives C. crescentus cells toward permanent surface attachment.