Cargando…

Inkjet-printed stretchable and low voltage synaptic transistor array

Wearable and skin electronics benefit from mechanically soft and stretchable materials to conform to curved and dynamic surfaces, thereby enabling seamless integration with the human body. However, such materials are challenging to process using traditional microelectronics techniques. Here, stretch...

Descripción completa

Detalles Bibliográficos
Autores principales: Molina-Lopez, F., Gao, T. Z., Kraft, U., Zhu, C., Öhlund, T., Pfattner, R., Feig, V. R., Kim, Y., Wang, S., Yun, Y., Bao, Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582140/
https://www.ncbi.nlm.nih.gov/pubmed/31213599
http://dx.doi.org/10.1038/s41467-019-10569-3
_version_ 1783428267331551232
author Molina-Lopez, F.
Gao, T. Z.
Kraft, U.
Zhu, C.
Öhlund, T.
Pfattner, R.
Feig, V. R.
Kim, Y.
Wang, S.
Yun, Y.
Bao, Z.
author_facet Molina-Lopez, F.
Gao, T. Z.
Kraft, U.
Zhu, C.
Öhlund, T.
Pfattner, R.
Feig, V. R.
Kim, Y.
Wang, S.
Yun, Y.
Bao, Z.
author_sort Molina-Lopez, F.
collection PubMed
description Wearable and skin electronics benefit from mechanically soft and stretchable materials to conform to curved and dynamic surfaces, thereby enabling seamless integration with the human body. However, such materials are challenging to process using traditional microelectronics techniques. Here, stretchable transistor arrays are patterned exclusively from solution by inkjet printing of polymers and carbon nanotubes. The additive, non-contact and maskless nature of inkjet printing provides a simple, inexpensive and scalable route for stacking and patterning these chemically-sensitive materials over large areas. The transistors, which are stable at ambient conditions, display mobilities as high as 30 cm(2) V(−1) s(−1) and currents per channel width of 0.2 mA cm(−1) at operation voltages as low as 1 V, owing to the ionic character of their printed gate dielectric. Furthermore, these transistors with double-layer capacitive dielectric can mimic the synaptic behavior of neurons, making them interesting for conformal brain-machine interfaces and other wearable bioelectronics.
format Online
Article
Text
id pubmed-6582140
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-65821402019-06-24 Inkjet-printed stretchable and low voltage synaptic transistor array Molina-Lopez, F. Gao, T. Z. Kraft, U. Zhu, C. Öhlund, T. Pfattner, R. Feig, V. R. Kim, Y. Wang, S. Yun, Y. Bao, Z. Nat Commun Article Wearable and skin electronics benefit from mechanically soft and stretchable materials to conform to curved and dynamic surfaces, thereby enabling seamless integration with the human body. However, such materials are challenging to process using traditional microelectronics techniques. Here, stretchable transistor arrays are patterned exclusively from solution by inkjet printing of polymers and carbon nanotubes. The additive, non-contact and maskless nature of inkjet printing provides a simple, inexpensive and scalable route for stacking and patterning these chemically-sensitive materials over large areas. The transistors, which are stable at ambient conditions, display mobilities as high as 30 cm(2) V(−1) s(−1) and currents per channel width of 0.2 mA cm(−1) at operation voltages as low as 1 V, owing to the ionic character of their printed gate dielectric. Furthermore, these transistors with double-layer capacitive dielectric can mimic the synaptic behavior of neurons, making them interesting for conformal brain-machine interfaces and other wearable bioelectronics. Nature Publishing Group UK 2019-06-18 /pmc/articles/PMC6582140/ /pubmed/31213599 http://dx.doi.org/10.1038/s41467-019-10569-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Molina-Lopez, F.
Gao, T. Z.
Kraft, U.
Zhu, C.
Öhlund, T.
Pfattner, R.
Feig, V. R.
Kim, Y.
Wang, S.
Yun, Y.
Bao, Z.
Inkjet-printed stretchable and low voltage synaptic transistor array
title Inkjet-printed stretchable and low voltage synaptic transistor array
title_full Inkjet-printed stretchable and low voltage synaptic transistor array
title_fullStr Inkjet-printed stretchable and low voltage synaptic transistor array
title_full_unstemmed Inkjet-printed stretchable and low voltage synaptic transistor array
title_short Inkjet-printed stretchable and low voltage synaptic transistor array
title_sort inkjet-printed stretchable and low voltage synaptic transistor array
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582140/
https://www.ncbi.nlm.nih.gov/pubmed/31213599
http://dx.doi.org/10.1038/s41467-019-10569-3
work_keys_str_mv AT molinalopezf inkjetprintedstretchableandlowvoltagesynaptictransistorarray
AT gaotz inkjetprintedstretchableandlowvoltagesynaptictransistorarray
AT kraftu inkjetprintedstretchableandlowvoltagesynaptictransistorarray
AT zhuc inkjetprintedstretchableandlowvoltagesynaptictransistorarray
AT ohlundt inkjetprintedstretchableandlowvoltagesynaptictransistorarray
AT pfattnerr inkjetprintedstretchableandlowvoltagesynaptictransistorarray
AT feigvr inkjetprintedstretchableandlowvoltagesynaptictransistorarray
AT kimy inkjetprintedstretchableandlowvoltagesynaptictransistorarray
AT wangs inkjetprintedstretchableandlowvoltagesynaptictransistorarray
AT yuny inkjetprintedstretchableandlowvoltagesynaptictransistorarray
AT baoz inkjetprintedstretchableandlowvoltagesynaptictransistorarray