Cargando…
KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images
The application of convolutional neural networks (ConvNets) to harness high-content screening images or 2D compound representations is gaining increasing attention in drug discovery. However, existing applications often require large data sets for training, or sophisticated pretraining schemes. Here...
Autores principales: | Cortés-Ciriano, Isidro, Bender, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582521/ https://www.ncbi.nlm.nih.gov/pubmed/31218493 http://dx.doi.org/10.1186/s13321-019-0364-5 |
Ejemplares similares
-
QSAR-derived affinity fingerprints (part 2): modeling performance for potency prediction
por: Cortés-Ciriano, Isidro, et al.
Publicado: (2020) -
Prediction of the potency of mammalian cyclooxygenase inhibitors with ensemble proteochemometric modeling
por: Cortes-Ciriano, Isidro, et al.
Publicado: (2015) -
Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules
por: Paricharak, Shardul, et al.
Publicado: (2015) -
Role of Kekulé and Non-Kekulé Structures in the Radical Character of Alternant Polycyclic Aromatic Hydrocarbons: A TAO-DFT Study
por: Yeh, Chia-Nan, et al.
Publicado: (2016) -
Applications of proteochemometrics - from species extrapolation to cell line sensitivity modelling
por: Cortes-Ciriano, Isidro, et al.
Publicado: (2015)