Cargando…
A scalable model of vegetation transitions using deep neural networks
1. In times of rapid global change, anticipating vegetation changes and assessing their impacts is of key relevance to managers and policy makers. Yet, predicting vegetation dynamics often suffers from an inherent scale mismatch, with abundant data and process understanding being available at a fine...
Autores principales: | Rammer, Werner, Seidl, Rupert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582592/ https://www.ncbi.nlm.nih.gov/pubmed/31244986 http://dx.doi.org/10.1111/2041-210X.13171 |
Ejemplares similares
-
Point‐Combination Transect (PCT): Incorporation of small underwater cameras to study fish communities
por: Widmer, Lukas, et al.
Publicado: (2019) -
Generalisation and specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA metabarcoding
por: Lucas, Andrew, et al.
Publicado: (2018) -
Harnessing Deep Learning in Ecology: An Example Predicting Bark Beetle Outbreaks
por: Rammer, Werner, et al.
Publicado: (2019) -
Moving from frugivory to seed dispersal: Incorporating the functional outcomes of interactions in plant–frugivore networks
por: Simmons, Benno I., et al.
Publicado: (2018) -
Chytrid fungi shape bacterial communities on model particulate organic matter
por: Roberts, Cordelia, et al.
Publicado: (2020)