Cargando…
GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism
Computational prediction of xenobiotic metabolism can provide valuable information to guide the development of drugs, cosmetics, agrochemicals, and other chemical entities. We have previously developed FAME 2, an effective tool for predicting sites of metabolism (SoMs). In this work, we focus on the...
Autores principales: | de Bruyn Kops, Christina, Stork, Conrad, Šícho, Martin, Kochev, Nikolay, Svozil, Daniel, Jeliazkova, Nina, Kirchmair, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582643/ https://www.ncbi.nlm.nih.gov/pubmed/31249827 http://dx.doi.org/10.3389/fchem.2019.00402 |
Ejemplares similares
-
CYPstrate: A Set of Machine Learning Models for the Accurate Classification of Cytochrome P450 Enzyme Substrates and Non-Substrates
por: Holmer, Malte, et al.
Publicado: (2021) -
GLORYx: Prediction
of the Metabolites Resulting from
Phase 1 and Phase 2 Biotransformations of Xenobiotics
por: de Bruyn Kops, Christina, et al.
Publicado: (2020) -
ALADDIN: Docking Approach Augmented by Machine Learning for Protein Structure Selection Yields Superior Virtual Screening Performance
por: Fan, Ningning, et al.
Publicado: (2019) -
Ambit-SMIRKS: a software module for reaction representation, reaction search and structure transformation
por: Kochev, Nikolay, et al.
Publicado: (2018) -
Skin Doctor CP: Conformal Prediction of the Skin Sensitization Potential of Small Organic Molecules
por: Wilm, Anke, et al.
Publicado: (2020)