Cargando…

microRNA-378a Regulates the Reactive Oxygen Species (ROS)/Phosphatidylinositol 3-Kinases (PI3K)/AKT Signaling Pathway in Human Lens Epithelial Cells and Cataract

BACKGROUND: Cataract is associated with increased apoptosis of the epithelial cells of the ocular lens. Previous studies have shown that microRNA-378a (miR-378a) has a role in the development of cataract, but the molecular mechanisms remain unclear. This study aimed to investigate the effects of miR...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yan, Li, Huanhuan, Liu, Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582685/
https://www.ncbi.nlm.nih.gov/pubmed/31178586
http://dx.doi.org/10.12659/MSM.916881
Descripción
Sumario:BACKGROUND: Cataract is associated with increased apoptosis of the epithelial cells of the ocular lens. Previous studies have shown that microRNA-378a (miR-378a) has a role in the development of cataract, but the molecular mechanisms remain unclear. This study aimed to investigate the effects of miR-378a in human lens epithelial cells (HLECs) in vitro and normal lens tissues and cataract tissues. MATERIAL/METHODS: HLECs were grown in culture. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot were used to examine gene expression levels. The MTT and TUNEL assay measured cell growth and apoptosis. Changes in the fluorescence ratio of ethidium to dihydroethidium (E: DHE) and in 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate (C-H(2)DCFDA) were used to detect superoxide (O(2)(−)) and hydrogen peroxide (H(2)O(2)). The expression levels of miR-378a and the superoxide dismutase 1 gene (SOD1) were measured in normal human lens tissues and cataract tissues. RESULTS: Upregulation of miR-378a reduced the expression of SOD1. Levels of O(2)(−) were upregulated and H(2)O(2) was slightly down-regulated by miR-378a. The use of a miR-378a mimic suppressed cell growth and enhanced apoptosis of HLECs, which were reversed by the use of a miR-378a inhibitor. SOD1 overexpression rescued the miR-378a-induced phenotypes of HLEC cells. Treatment with the PI3K inhibitor, LY294002, reversed miR-378a and ROS-regulated proliferation and apoptosis of HLEC cells. Also, miR-378a was upregulated, and SOD1 was down-regulated in human cataract tissues. CONCLUSIONS: In HLECs, expression of miR-378a regulated ROS and PI3K/AKT signaling, and miR-378a was upregulated, and SOD1 was down-regulated in human cataract tissue.