Cargando…
Controlling the preferential motion of chiral molecular walkers on a surface
Molecular walkers standing on two or more “feet” on an anisotropic periodic potential of a crystal surface may perform a one-dimensional Brownian motion at the surface–vacuum interface along a particular direction in which their mobility is the largest. In thermal equilibrium the molecules move with...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582760/ https://www.ncbi.nlm.nih.gov/pubmed/31360390 http://dx.doi.org/10.1039/c9sc01135h |
_version_ | 1783428389809422336 |
---|---|
author | Abbasi-Pérez, David Sang, Hongqian Pérez-García, Lluïsa Floris, Andrea Amabilino, David B. Raval, Rasmita Recio, J. Manuel Kantorovich, Lev |
author_facet | Abbasi-Pérez, David Sang, Hongqian Pérez-García, Lluïsa Floris, Andrea Amabilino, David B. Raval, Rasmita Recio, J. Manuel Kantorovich, Lev |
author_sort | Abbasi-Pérez, David |
collection | PubMed |
description | Molecular walkers standing on two or more “feet” on an anisotropic periodic potential of a crystal surface may perform a one-dimensional Brownian motion at the surface–vacuum interface along a particular direction in which their mobility is the largest. In thermal equilibrium the molecules move with equal probabilities both ways along this direction, as expected from the detailed balance principle, well-known in chemical reactivity and in the theory of molecular motors. For molecules that possess an asymmetric potential energy surface (PES), we propose a generic method based on the application of a time-periodic external stimulus that would enable the molecules to move preferentially in a single direction thereby acting as Brownian ratchets. To illustrate this method, we consider a prototypical synthetic chiral molecular walker, 1,3-bis(imidazol-1-ylmethyl)-5(1-phenylethyl)benzene, diffusing on the anisotropic Cu(110) surface along the Cu rows. As unveiled by our kinetic Monte Carlo simulations based on the rates calculated using ab initio density functional theory, this molecule moves to the nearest equivalent lattice site via the so-called inchworm mechanism in which it steps first with the rear foot and then with the front foot. As a result, the molecule diffuses via a two-step mechanism, and due to its inherent asymmetry, the corresponding PES is also spatially asymmetric. Taking advantage of this fact, we show how the external stimulus can be tuned to separate molecules of different chirality, orientation and conformation. The consequences of these findings for molecular machines and the separation of enantiomers are also discussed. |
format | Online Article Text |
id | pubmed-6582760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-65827602019-07-29 Controlling the preferential motion of chiral molecular walkers on a surface Abbasi-Pérez, David Sang, Hongqian Pérez-García, Lluïsa Floris, Andrea Amabilino, David B. Raval, Rasmita Recio, J. Manuel Kantorovich, Lev Chem Sci Chemistry Molecular walkers standing on two or more “feet” on an anisotropic periodic potential of a crystal surface may perform a one-dimensional Brownian motion at the surface–vacuum interface along a particular direction in which their mobility is the largest. In thermal equilibrium the molecules move with equal probabilities both ways along this direction, as expected from the detailed balance principle, well-known in chemical reactivity and in the theory of molecular motors. For molecules that possess an asymmetric potential energy surface (PES), we propose a generic method based on the application of a time-periodic external stimulus that would enable the molecules to move preferentially in a single direction thereby acting as Brownian ratchets. To illustrate this method, we consider a prototypical synthetic chiral molecular walker, 1,3-bis(imidazol-1-ylmethyl)-5(1-phenylethyl)benzene, diffusing on the anisotropic Cu(110) surface along the Cu rows. As unveiled by our kinetic Monte Carlo simulations based on the rates calculated using ab initio density functional theory, this molecule moves to the nearest equivalent lattice site via the so-called inchworm mechanism in which it steps first with the rear foot and then with the front foot. As a result, the molecule diffuses via a two-step mechanism, and due to its inherent asymmetry, the corresponding PES is also spatially asymmetric. Taking advantage of this fact, we show how the external stimulus can be tuned to separate molecules of different chirality, orientation and conformation. The consequences of these findings for molecular machines and the separation of enantiomers are also discussed. Royal Society of Chemistry 2019-05-14 /pmc/articles/PMC6582760/ /pubmed/31360390 http://dx.doi.org/10.1039/c9sc01135h Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Abbasi-Pérez, David Sang, Hongqian Pérez-García, Lluïsa Floris, Andrea Amabilino, David B. Raval, Rasmita Recio, J. Manuel Kantorovich, Lev Controlling the preferential motion of chiral molecular walkers on a surface |
title | Controlling the preferential motion of chiral molecular walkers on a surface
|
title_full | Controlling the preferential motion of chiral molecular walkers on a surface
|
title_fullStr | Controlling the preferential motion of chiral molecular walkers on a surface
|
title_full_unstemmed | Controlling the preferential motion of chiral molecular walkers on a surface
|
title_short | Controlling the preferential motion of chiral molecular walkers on a surface
|
title_sort | controlling the preferential motion of chiral molecular walkers on a surface |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582760/ https://www.ncbi.nlm.nih.gov/pubmed/31360390 http://dx.doi.org/10.1039/c9sc01135h |
work_keys_str_mv | AT abbasiperezdavid controllingthepreferentialmotionofchiralmolecularwalkersonasurface AT sanghongqian controllingthepreferentialmotionofchiralmolecularwalkersonasurface AT perezgarcialluisa controllingthepreferentialmotionofchiralmolecularwalkersonasurface AT florisandrea controllingthepreferentialmotionofchiralmolecularwalkersonasurface AT amabilinodavidb controllingthepreferentialmotionofchiralmolecularwalkersonasurface AT ravalrasmita controllingthepreferentialmotionofchiralmolecularwalkersonasurface AT reciojmanuel controllingthepreferentialmotionofchiralmolecularwalkersonasurface AT kantorovichlev controllingthepreferentialmotionofchiralmolecularwalkersonasurface |