Cargando…
Fusobacterium nucleatum Aggravates the Progression of Colitis by Regulating M1 Macrophage Polarization via AKT2 Pathway
Disordered intestinal flora and discordant immune response are associated with the development of ulcerative colitis (UC). Recent work has described the ability of macrophages to undergo repolarization toward a proinflammatory M1 or anti-inflammatory M2 phenotype in response to particular bacterium-...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582778/ https://www.ncbi.nlm.nih.gov/pubmed/31249571 http://dx.doi.org/10.3389/fimmu.2019.01324 |
_version_ | 1783428393795059712 |
---|---|
author | Liu, Le Liang, Liping Liang, Huifen Wang, Mingming Lu, Bingyun Xue, Meng Deng, Jun Chen, Ye |
author_facet | Liu, Le Liang, Liping Liang, Huifen Wang, Mingming Lu, Bingyun Xue, Meng Deng, Jun Chen, Ye |
author_sort | Liu, Le |
collection | PubMed |
description | Disordered intestinal flora and discordant immune response are associated with the development of ulcerative colitis (UC). Recent work has described the ability of macrophages to undergo repolarization toward a proinflammatory M1 or anti-inflammatory M2 phenotype in response to particular bacterium-derived signals. Fusobacterium nucleatum (F. nucleatum, Fn) is a species of intestinal commensal bacteria with potential pathogenicity, but its association with UC and how it may contribute to progression of UC is largely unknown. In this study, we provide new evidence that F. nucleatum accumulated heavily in the intestine of UC patients and was accompanied by the secretion of IFN-γ and the skewing of M1 macrophages. Mechanistically, our data showed that F. nucleatum aggravated dextran sodium sulfate (DSS)-induced colitis in the production of Th1-related cytokines IFN-γ through the AKT2 signaling pathway in vitro and in vivo. To further confirm the disease-relevance of these shifts in macrophage repolarization in response to F. nucleatum, stimulated bone marrow-derived macrophages (BMDMs) were transferred into recipient mice with DSS colitis. This transfer resulted in increased disease activity and inflammatory cytokine production. Taken together, we show clearly that F. nucleatum can promote the progression of UC via proinflammatory M1 macrophage skewing, and targeting F. nucleatum or AKT2 signaling may be a viable means of blocking development of UC. |
format | Online Article Text |
id | pubmed-6582778 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65827782019-06-27 Fusobacterium nucleatum Aggravates the Progression of Colitis by Regulating M1 Macrophage Polarization via AKT2 Pathway Liu, Le Liang, Liping Liang, Huifen Wang, Mingming Lu, Bingyun Xue, Meng Deng, Jun Chen, Ye Front Immunol Immunology Disordered intestinal flora and discordant immune response are associated with the development of ulcerative colitis (UC). Recent work has described the ability of macrophages to undergo repolarization toward a proinflammatory M1 or anti-inflammatory M2 phenotype in response to particular bacterium-derived signals. Fusobacterium nucleatum (F. nucleatum, Fn) is a species of intestinal commensal bacteria with potential pathogenicity, but its association with UC and how it may contribute to progression of UC is largely unknown. In this study, we provide new evidence that F. nucleatum accumulated heavily in the intestine of UC patients and was accompanied by the secretion of IFN-γ and the skewing of M1 macrophages. Mechanistically, our data showed that F. nucleatum aggravated dextran sodium sulfate (DSS)-induced colitis in the production of Th1-related cytokines IFN-γ through the AKT2 signaling pathway in vitro and in vivo. To further confirm the disease-relevance of these shifts in macrophage repolarization in response to F. nucleatum, stimulated bone marrow-derived macrophages (BMDMs) were transferred into recipient mice with DSS colitis. This transfer resulted in increased disease activity and inflammatory cytokine production. Taken together, we show clearly that F. nucleatum can promote the progression of UC via proinflammatory M1 macrophage skewing, and targeting F. nucleatum or AKT2 signaling may be a viable means of blocking development of UC. Frontiers Media S.A. 2019-06-12 /pmc/articles/PMC6582778/ /pubmed/31249571 http://dx.doi.org/10.3389/fimmu.2019.01324 Text en Copyright © 2019 Liu, Liang, Liang, Wang, Lu, Xue, Deng and Chen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Liu, Le Liang, Liping Liang, Huifen Wang, Mingming Lu, Bingyun Xue, Meng Deng, Jun Chen, Ye Fusobacterium nucleatum Aggravates the Progression of Colitis by Regulating M1 Macrophage Polarization via AKT2 Pathway |
title | Fusobacterium nucleatum Aggravates the Progression of Colitis by Regulating M1 Macrophage Polarization via AKT2 Pathway |
title_full | Fusobacterium nucleatum Aggravates the Progression of Colitis by Regulating M1 Macrophage Polarization via AKT2 Pathway |
title_fullStr | Fusobacterium nucleatum Aggravates the Progression of Colitis by Regulating M1 Macrophage Polarization via AKT2 Pathway |
title_full_unstemmed | Fusobacterium nucleatum Aggravates the Progression of Colitis by Regulating M1 Macrophage Polarization via AKT2 Pathway |
title_short | Fusobacterium nucleatum Aggravates the Progression of Colitis by Regulating M1 Macrophage Polarization via AKT2 Pathway |
title_sort | fusobacterium nucleatum aggravates the progression of colitis by regulating m1 macrophage polarization via akt2 pathway |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582778/ https://www.ncbi.nlm.nih.gov/pubmed/31249571 http://dx.doi.org/10.3389/fimmu.2019.01324 |
work_keys_str_mv | AT liule fusobacteriumnucleatumaggravatestheprogressionofcolitisbyregulatingm1macrophagepolarizationviaakt2pathway AT liangliping fusobacteriumnucleatumaggravatestheprogressionofcolitisbyregulatingm1macrophagepolarizationviaakt2pathway AT lianghuifen fusobacteriumnucleatumaggravatestheprogressionofcolitisbyregulatingm1macrophagepolarizationviaakt2pathway AT wangmingming fusobacteriumnucleatumaggravatestheprogressionofcolitisbyregulatingm1macrophagepolarizationviaakt2pathway AT lubingyun fusobacteriumnucleatumaggravatestheprogressionofcolitisbyregulatingm1macrophagepolarizationviaakt2pathway AT xuemeng fusobacteriumnucleatumaggravatestheprogressionofcolitisbyregulatingm1macrophagepolarizationviaakt2pathway AT dengjun fusobacteriumnucleatumaggravatestheprogressionofcolitisbyregulatingm1macrophagepolarizationviaakt2pathway AT chenye fusobacteriumnucleatumaggravatestheprogressionofcolitisbyregulatingm1macrophagepolarizationviaakt2pathway |