Cargando…
A Novel Metal-Organic Framework Composite, MIL-101(Cr)@MIP, as an Efficient Sorbent in Solid-Phase Extraction Coupling with HPLC for Tribenuron-Methyl Determination
A highly efficient and selective method based on core–shell molecularly imprinted polymers (MIL@MIP) and high performance liquid chromatography (HPLC) was developed and firstly used for the trace analysis of tribenuron-methyl (TBM) in complicated matrices. The MIL@MIP was prepared by surface molecul...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582831/ https://www.ncbi.nlm.nih.gov/pubmed/31275388 http://dx.doi.org/10.1155/2019/2547280 |
_version_ | 1783428406238511104 |
---|---|
author | Zheng, Xinyuan Wang, Junping |
author_facet | Zheng, Xinyuan Wang, Junping |
author_sort | Zheng, Xinyuan |
collection | PubMed |
description | A highly efficient and selective method based on core–shell molecularly imprinted polymers (MIL@MIP) and high performance liquid chromatography (HPLC) was developed and firstly used for the trace analysis of tribenuron-methyl (TBM) in complicated matrices. The MIL@MIP was prepared by surface molecular-imprinting technique, specially using MIL-101 as core, TBM as template molecule, methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, and azobisisobutyronitrile (AIBN) as initiator. The resulting MIL@MIP showed high affinity, recognition specificity, fast mass transfer rate, and efficient adsorption performance towards TBM with the adsorption capacity reaching up to 3.217 mg/g. It also showed high cross-selectivity for TBM among its six kinds of chemical structure analogues. Furthermore, using the MIL@MIP as solid-phase extraction (SPE) materials, the recoveries of TBM determined by HPLC were 84.6-92.3%, 93.3-106.7%, and 88.9-93.3% in the spiked river water, soil, and soybean samples, respectively, with the limit of detection of 0.3 ng/L, 1.5 ng/kg, and 1.5 ng/kg, accordingly. It was proved that the developed HPLC-MISPE method was fast, accurate, and sensitive for detecting the trace TBM in river water, soil, and soybean samples. |
format | Online Article Text |
id | pubmed-6582831 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-65828312019-07-03 A Novel Metal-Organic Framework Composite, MIL-101(Cr)@MIP, as an Efficient Sorbent in Solid-Phase Extraction Coupling with HPLC for Tribenuron-Methyl Determination Zheng, Xinyuan Wang, Junping Int J Anal Chem Research Article A highly efficient and selective method based on core–shell molecularly imprinted polymers (MIL@MIP) and high performance liquid chromatography (HPLC) was developed and firstly used for the trace analysis of tribenuron-methyl (TBM) in complicated matrices. The MIL@MIP was prepared by surface molecular-imprinting technique, specially using MIL-101 as core, TBM as template molecule, methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, and azobisisobutyronitrile (AIBN) as initiator. The resulting MIL@MIP showed high affinity, recognition specificity, fast mass transfer rate, and efficient adsorption performance towards TBM with the adsorption capacity reaching up to 3.217 mg/g. It also showed high cross-selectivity for TBM among its six kinds of chemical structure analogues. Furthermore, using the MIL@MIP as solid-phase extraction (SPE) materials, the recoveries of TBM determined by HPLC were 84.6-92.3%, 93.3-106.7%, and 88.9-93.3% in the spiked river water, soil, and soybean samples, respectively, with the limit of detection of 0.3 ng/L, 1.5 ng/kg, and 1.5 ng/kg, accordingly. It was proved that the developed HPLC-MISPE method was fast, accurate, and sensitive for detecting the trace TBM in river water, soil, and soybean samples. Hindawi 2019-06-02 /pmc/articles/PMC6582831/ /pubmed/31275388 http://dx.doi.org/10.1155/2019/2547280 Text en Copyright © 2019 Xinyuan Zheng and Junping Wang. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zheng, Xinyuan Wang, Junping A Novel Metal-Organic Framework Composite, MIL-101(Cr)@MIP, as an Efficient Sorbent in Solid-Phase Extraction Coupling with HPLC for Tribenuron-Methyl Determination |
title | A Novel Metal-Organic Framework Composite, MIL-101(Cr)@MIP, as an Efficient Sorbent in Solid-Phase Extraction Coupling with HPLC for Tribenuron-Methyl Determination |
title_full | A Novel Metal-Organic Framework Composite, MIL-101(Cr)@MIP, as an Efficient Sorbent in Solid-Phase Extraction Coupling with HPLC for Tribenuron-Methyl Determination |
title_fullStr | A Novel Metal-Organic Framework Composite, MIL-101(Cr)@MIP, as an Efficient Sorbent in Solid-Phase Extraction Coupling with HPLC for Tribenuron-Methyl Determination |
title_full_unstemmed | A Novel Metal-Organic Framework Composite, MIL-101(Cr)@MIP, as an Efficient Sorbent in Solid-Phase Extraction Coupling with HPLC for Tribenuron-Methyl Determination |
title_short | A Novel Metal-Organic Framework Composite, MIL-101(Cr)@MIP, as an Efficient Sorbent in Solid-Phase Extraction Coupling with HPLC for Tribenuron-Methyl Determination |
title_sort | novel metal-organic framework composite, mil-101(cr)@mip, as an efficient sorbent in solid-phase extraction coupling with hplc for tribenuron-methyl determination |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582831/ https://www.ncbi.nlm.nih.gov/pubmed/31275388 http://dx.doi.org/10.1155/2019/2547280 |
work_keys_str_mv | AT zhengxinyuan anovelmetalorganicframeworkcompositemil101crmipasanefficientsorbentinsolidphaseextractioncouplingwithhplcfortribenuronmethyldetermination AT wangjunping anovelmetalorganicframeworkcompositemil101crmipasanefficientsorbentinsolidphaseextractioncouplingwithhplcfortribenuronmethyldetermination AT zhengxinyuan novelmetalorganicframeworkcompositemil101crmipasanefficientsorbentinsolidphaseextractioncouplingwithhplcfortribenuronmethyldetermination AT wangjunping novelmetalorganicframeworkcompositemil101crmipasanefficientsorbentinsolidphaseextractioncouplingwithhplcfortribenuronmethyldetermination |