Cargando…
Salvia miltiorrhiza and Carthamus tinctorius Extract Prevents Cardiac Fibrosis and Dysfunction after Myocardial Infarction by Epigenetically Inhibiting Smad3 Expression
The incidence of cardiac dysfunction after myocardial infarction (MI) continues to increase despite advances in treatment. Excessive myocardial fibrosis plays a vital role in the development of adverse cardiac remodeling and deterioration of cardiac function. Understanding the molecular and cellular...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582873/ https://www.ncbi.nlm.nih.gov/pubmed/31275414 http://dx.doi.org/10.1155/2019/6479136 |
_version_ | 1783428416058425344 |
---|---|
author | Yang, Jing Wang, Bo Li, Na Zhou, Qingqing Zhou, Wenhui Zhan, Zhenzhen |
author_facet | Yang, Jing Wang, Bo Li, Na Zhou, Qingqing Zhou, Wenhui Zhan, Zhenzhen |
author_sort | Yang, Jing |
collection | PubMed |
description | The incidence of cardiac dysfunction after myocardial infarction (MI) continues to increase despite advances in treatment. Excessive myocardial fibrosis plays a vital role in the development of adverse cardiac remodeling and deterioration of cardiac function. Understanding the molecular and cellular mechanism of the fibrosis process and developing effective therapeutics are of great importance. Salvia miltiorrhiza and Carthamus tinctorius extract (SCE) is indicated for angina pectoris and other ischemic cardiovascular diseases in China. SCE has been shown to inhibit the platelet activation and aggregation, ameliorate ROS-induced myocardial necrosis by inhibiting mitochondrial permeability transition pore opening, and promote angiogenesis by upregulating the expression of vascular endothelial growth factor (VEGF). However, whether SCE has effect on cardiac fibrosis after MI is not fully clear. Here, a mouse model of MI was established to observe the effect of SCE upon survival, cardiac function, myocardial fibrosis, and inflammation. Quantitative PCR and western blot assays were used to determine the expression of genes related to transforming growth factor-β (TGF-β) cascade and inflammatory responses in vivo. Additionally, the effects of SCE upon the collagen production, TGF-β/Smad3 (SMAD family member 3) signaling, and the levels of histone methylation in primary cardiac fibroblasts were detected. We found that SCE treatment significantly improved survival and left ventricular function in mice after MI. Inhibition of inflammation and fibrosis, as well as decreased expression of Smad3, was observed with SCE treatment. In TGF-β-stimulated cardiac fibroblasts, SCE significantly decreased the expression of collagen, α-smooth muscle actin (α-SMA), and Smad3. Furthermore, SCE treatment downregulated the levels of H3K4 trimethylation (H3K4me3) and H3K36 trimethylation (H3K36me3) at the Smad3 promoter region of cardiac fibroblasts, leading to inhibition of Smad3 transcription. Our findings suggested that SCE prevents myocardial fibrosis and adverse remodeling after MI with a novel mechanism of suppressing histone methylation of the Smad3 promoter and its transcription. |
format | Online Article Text |
id | pubmed-6582873 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-65828732019-07-03 Salvia miltiorrhiza and Carthamus tinctorius Extract Prevents Cardiac Fibrosis and Dysfunction after Myocardial Infarction by Epigenetically Inhibiting Smad3 Expression Yang, Jing Wang, Bo Li, Na Zhou, Qingqing Zhou, Wenhui Zhan, Zhenzhen Evid Based Complement Alternat Med Research Article The incidence of cardiac dysfunction after myocardial infarction (MI) continues to increase despite advances in treatment. Excessive myocardial fibrosis plays a vital role in the development of adverse cardiac remodeling and deterioration of cardiac function. Understanding the molecular and cellular mechanism of the fibrosis process and developing effective therapeutics are of great importance. Salvia miltiorrhiza and Carthamus tinctorius extract (SCE) is indicated for angina pectoris and other ischemic cardiovascular diseases in China. SCE has been shown to inhibit the platelet activation and aggregation, ameliorate ROS-induced myocardial necrosis by inhibiting mitochondrial permeability transition pore opening, and promote angiogenesis by upregulating the expression of vascular endothelial growth factor (VEGF). However, whether SCE has effect on cardiac fibrosis after MI is not fully clear. Here, a mouse model of MI was established to observe the effect of SCE upon survival, cardiac function, myocardial fibrosis, and inflammation. Quantitative PCR and western blot assays were used to determine the expression of genes related to transforming growth factor-β (TGF-β) cascade and inflammatory responses in vivo. Additionally, the effects of SCE upon the collagen production, TGF-β/Smad3 (SMAD family member 3) signaling, and the levels of histone methylation in primary cardiac fibroblasts were detected. We found that SCE treatment significantly improved survival and left ventricular function in mice after MI. Inhibition of inflammation and fibrosis, as well as decreased expression of Smad3, was observed with SCE treatment. In TGF-β-stimulated cardiac fibroblasts, SCE significantly decreased the expression of collagen, α-smooth muscle actin (α-SMA), and Smad3. Furthermore, SCE treatment downregulated the levels of H3K4 trimethylation (H3K4me3) and H3K36 trimethylation (H3K36me3) at the Smad3 promoter region of cardiac fibroblasts, leading to inhibition of Smad3 transcription. Our findings suggested that SCE prevents myocardial fibrosis and adverse remodeling after MI with a novel mechanism of suppressing histone methylation of the Smad3 promoter and its transcription. Hindawi 2019-05-30 /pmc/articles/PMC6582873/ /pubmed/31275414 http://dx.doi.org/10.1155/2019/6479136 Text en Copyright © 2019 Jing Yang et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Jing Wang, Bo Li, Na Zhou, Qingqing Zhou, Wenhui Zhan, Zhenzhen Salvia miltiorrhiza and Carthamus tinctorius Extract Prevents Cardiac Fibrosis and Dysfunction after Myocardial Infarction by Epigenetically Inhibiting Smad3 Expression |
title |
Salvia miltiorrhiza and Carthamus tinctorius Extract Prevents Cardiac Fibrosis and Dysfunction after Myocardial Infarction by Epigenetically Inhibiting Smad3 Expression |
title_full |
Salvia miltiorrhiza and Carthamus tinctorius Extract Prevents Cardiac Fibrosis and Dysfunction after Myocardial Infarction by Epigenetically Inhibiting Smad3 Expression |
title_fullStr |
Salvia miltiorrhiza and Carthamus tinctorius Extract Prevents Cardiac Fibrosis and Dysfunction after Myocardial Infarction by Epigenetically Inhibiting Smad3 Expression |
title_full_unstemmed |
Salvia miltiorrhiza and Carthamus tinctorius Extract Prevents Cardiac Fibrosis and Dysfunction after Myocardial Infarction by Epigenetically Inhibiting Smad3 Expression |
title_short |
Salvia miltiorrhiza and Carthamus tinctorius Extract Prevents Cardiac Fibrosis and Dysfunction after Myocardial Infarction by Epigenetically Inhibiting Smad3 Expression |
title_sort | salvia miltiorrhiza and carthamus tinctorius extract prevents cardiac fibrosis and dysfunction after myocardial infarction by epigenetically inhibiting smad3 expression |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582873/ https://www.ncbi.nlm.nih.gov/pubmed/31275414 http://dx.doi.org/10.1155/2019/6479136 |
work_keys_str_mv | AT yangjing salviamiltiorrhizaandcarthamustinctoriusextractpreventscardiacfibrosisanddysfunctionaftermyocardialinfarctionbyepigeneticallyinhibitingsmad3expression AT wangbo salviamiltiorrhizaandcarthamustinctoriusextractpreventscardiacfibrosisanddysfunctionaftermyocardialinfarctionbyepigeneticallyinhibitingsmad3expression AT lina salviamiltiorrhizaandcarthamustinctoriusextractpreventscardiacfibrosisanddysfunctionaftermyocardialinfarctionbyepigeneticallyinhibitingsmad3expression AT zhouqingqing salviamiltiorrhizaandcarthamustinctoriusextractpreventscardiacfibrosisanddysfunctionaftermyocardialinfarctionbyepigeneticallyinhibitingsmad3expression AT zhouwenhui salviamiltiorrhizaandcarthamustinctoriusextractpreventscardiacfibrosisanddysfunctionaftermyocardialinfarctionbyepigeneticallyinhibitingsmad3expression AT zhanzhenzhen salviamiltiorrhizaandcarthamustinctoriusextractpreventscardiacfibrosisanddysfunctionaftermyocardialinfarctionbyepigeneticallyinhibitingsmad3expression |