Cargando…
Simulation of Inference Accuracy Using Realistic RRAM Devices
Resistive Random Access Memory (RRAM) is a promising technology for power efficient hardware in applications of artificial intelligence (AI) and machine learning (ML) implemented in non-von Neumann architectures. However, there is an unanswered question if the device non-idealities preclude the use...
Autores principales: | Mehonic, Adnan, Joksas, Dovydas, Ng, Wing H., Buckwell, Mark, Kenyon, Anthony J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582938/ https://www.ncbi.nlm.nih.gov/pubmed/31249502 http://dx.doi.org/10.3389/fnins.2019.00593 |
Ejemplares similares
-
Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices
por: Zarudnyi, Konstantin, et al.
Publicado: (2018) -
Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM
por: Buckwell, Mark, et al.
Publicado: (2015) -
Emulating the Electrical Activity of the Neuron Using a Silicon Oxide RRAM Cell
por: Mehonic, Adnan, et al.
Publicado: (2016) -
Nonideality‐Aware Training for Accurate and Robust Low‐Power Memristive Neural Networks
por: Joksas, Dovydas, et al.
Publicado: (2022) -
Memristor-Based Edge Detection for Spike Encoded Pixels
por: Mannion, Daniel J., et al.
Publicado: (2020)