Cargando…

Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation

Channelrhodopsin2 (ChR2) optogenetic excitation is widely used to study neurons, astrocytes, and circuits. Using complementary approaches in situ and in vivo, we found that ChR2 stimulation leads to significant transient elevation of extracellular potassium ions by ~5 mM. Such elevations were detect...

Descripción completa

Detalles Bibliográficos
Autores principales: Octeau, J. Christopher, Gangwani, Mohitkumar R., Allam, Sushmita L., Tran, Duy, Huang, Shuhan, Hoang-Trong, Tuan M., Golshani, Peyman, Rumbell, Timothy H., Kozloski, James R., Khakh, Baljit S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582980/
https://www.ncbi.nlm.nih.gov/pubmed/31116972
http://dx.doi.org/10.1016/j.celrep.2019.04.078
Descripción
Sumario:Channelrhodopsin2 (ChR2) optogenetic excitation is widely used to study neurons, astrocytes, and circuits. Using complementary approaches in situ and in vivo, we found that ChR2 stimulation leads to significant transient elevation of extracellular potassium ions by ~5 mM. Such elevations were detected in ChR2-expressing mice, following local in vivo expression of ChR2(H134R) with adeno-associated viruses (AAVs), in different brain areas and when ChR2 was expressed in neurons or astrocytes. In particular, ChR2-mediated excitation of striatal astrocytes was sufficient to increase medium spiny neuron (MSN) excitability and immediate early gene expression. The effects on MSN excitability were recapitulated in silico with a computational MSN model and detected in vivo as increased action potential firing in awake, behaving mice. We show that transient, physiologically consequential increases in extracellular potassium ions accompany ChR2 optogenetic excitation. This coincidental effect may be important to consider during astrocyte studies employing ChR2 to interrogate neural circuits and animal behavior.