Cargando…
Development and Validation of a Deep Learning–Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs
IMPORTANCE: Interpretation of chest radiographs is a challenging task prone to errors, requiring expert readers. An automated system that can accurately classify chest radiographs may help streamline the clinical workflow. OBJECTIVES: To develop a deep learning–based algorithm that can classify norm...
Autores principales: | Hwang, Eui Jin, Park, Sunggyun, Jin, Kwang-Nam, Kim, Jung Im, Choi, So Young, Lee, Jong Hyuk, Goo, Jin Mo, Aum, Jaehong, Yim, Jae-Joon, Cohen, Julien G., Ferretti, Gilbert R., Park, Chang Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6583308/ https://www.ncbi.nlm.nih.gov/pubmed/30901052 http://dx.doi.org/10.1001/jamanetworkopen.2019.1095 |
Ejemplares similares
-
Development and Validation of a Deep Learning–based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs
por: Hwang, Eui Jin, et al.
Publicado: (2019) -
Evaluation of a deep learning-based computer-aided detection algorithm on chest radiographs: Case–control study
por: Choi, Soo Yun, et al.
Publicado: (2021) -
Effects of Implementing Artificial Intelligence-Based Computer-Aided Detection for Chest Radiographs in Daily Practice on the Rate of Referral to Chest Computed Tomography in Pulmonology Outpatient Clinic
por: Hong, Wonju, et al.
Publicado: (2023) -
Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs
por: Nam, Ju Gang, et al.
Publicado: (2021) -
Computer-Aided Detection of Malignant Lung Nodules on Chest Radiographs: Effect on Observers' Performance
por: Lee, Kyung Hee, et al.
Publicado: (2012)