Cargando…
Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions
IMPORTANCE: Current approaches to identifying individuals at high risk for opioid overdose target many patients who are not truly at high risk. OBJECTIVE: To develop and validate a machine-learning algorithm to predict opioid overdose risk among Medicare beneficiaries with at least 1 opioid prescrip...
Autores principales: | Lo-Ciganic, Wei-Hsuan, Huang, James L., Zhang, Hao H., Weiss, Jeremy C., Wu, Yonghui, Kwoh, C. Kent, Donohue, Julie M., Cochran, Gerald, Gordon, Adam J., Malone, Daniel C., Kuza, Courtney C., Gellad, Walid F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6583312/ https://www.ncbi.nlm.nih.gov/pubmed/30901048 http://dx.doi.org/10.1001/jamanetworkopen.2019.0968 |
Ejemplares similares
-
Using machine learning to predict risk of incident opioid use disorder among fee-for-service Medicare beneficiaries: A prognostic study
por: Lo-Ciganic, Wei-Hsuan, et al.
Publicado: (2020) -
Developing and validating a machine-learning algorithm to predict opioid overdose in Medicaid beneficiaries in two US states: a prognostic modelling study
por: Lo-Ciganic, Wei-Hsuan, et al.
Publicado: (2022) -
Integrating human services and criminal justice data with claims data to predict risk of opioid overdose among Medicaid beneficiaries: A machine-learning approach
por: Lo-Ciganic, Wei-Hsuan, et al.
Publicado: (2021) -
Prescription Opioid Quality Measures Applied Among Pennsylvania Medicaid Enrollees
por: Cochran, Gerald, et al.
Publicado: (2018) -
National patterns of cessation of prescription opioids among Medicare beneficiaries, 2013–2018
por: Westra, Jordan, et al.
Publicado: (2022)