Cargando…
Machine learning approach yields epigenetic biomarkers of food allergy: A novel 13-gene signature to diagnose clinical reactivity
BACKGROUND: Current laboratory tests are less than 50% accurate in distinguishing between people who have food allergies (FA) and those who are merely sensitized to foods, resulting in the use of expensive and potentially dangerous Oral Food Challenges. This study presents a purely-computational mac...
Autor principal: | Alag, Ayush |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584060/ https://www.ncbi.nlm.nih.gov/pubmed/31216310 http://dx.doi.org/10.1371/journal.pone.0218253 |
Ejemplares similares
-
Correction: Machine learning approach yields epigenetic biomarkers of food allergy: A novel 13-gene signature to diagnose clinical reactivity
Publicado: (2019) -
Epigenetics in Food Allergy and Immunomodulation
por: Cañas, José A., et al.
Publicado: (2021) -
Trained innate immunity, epigenetics, and food allergy
por: Arzola-Martínez, Llilian, et al.
Publicado: (2023) -
Food Hypersensitivity: Diagnosing and Managing Food Allergies and Intolerances
por: Venter, Carina
Publicado: (2012) -
Reactivity Graph Yields Interpretable IgM Repertoire Signatures as Potential Tumor Biomarkers
por: Ferdinandov, Dilyan, et al.
Publicado: (2023)